Table of Contents

Chapter 1
TECHNICAL SPECIFICATION 1-1
Description 1-1
AC Power Supply Input. 1-1
DC Power Supply Input 1-1
Mechanical Dimensions 1-2
Environmental Specification 1-2
Options 1-2
Frequency Standard Options 1-3
External Frequency Standard 1-3
Frequency Multiplier (Option DIV) 1-3
Reference Changeover (Option RC0) 1-3
Battery Back-Up (Option BBU) 1-3
Rubidium FRKL (H) 1-3
Rubidium FRS-C 1-4
Quartz 04F 1-4
Quartz 04A 1-4
PSU Service Option (Option PSO) 1-4
Chapter 2
GENERAL DESCRIPTION 2-1
Introduction 2-1
9480 DESCRIPTION 2-2
Applications 2-2
THE 9480 SYSTEM 2-2
Frequency Standards External 2-2
Internal 2-2
Available Standards 2-3
Aging. 2-3
Allan Variance. 2-3
Phase Noise 2-4
Retrace 2-4
Power Supplies 2-5
Chapter 3
PREPARATION FOR USE 3-1
Introduction 3-1
Unpacking 3-1
Examination 3-1
Output Card Description 3-1
Future Expansion. 3-1
External Standard 3-2
9481 Product Interfaces 3-3
Power Supply System 3-4
AC/DC Lines 3-4
AC Line Select 3-4
Internal Battery 3-4
Rack Mounting 3-5
Chapter 4
OPERATING INSTRUCTIONS 4-1
Master Or Slave Operation 4-1
Reference Changeover 4-1
Operational Voltages 4-1
Front Panel Features 4-1
Output Failure (OUTPUT CARDS) 4-2
Frequency Lock (LOCK) 4-2
External Frequency (EXT. STD.) 4-2
Power Source (POWER) 4-2
ALARM and RESET 4-2
OUTPUTS 4-3
INTERNAL STANDARD ADJUST 4-3
REAR PANEL 4-3
Mains Input 4-3
DC Input 4-4
External PPS (Option) 4-4
10MHz Input 4-4
Diagnostic Connector 4-4
Chapter 5
TECHNICAL DESCRIPTION 5-1
Introduction 5-1
Distribution Board 19-3106 5-1
Reference Selection 5-1
Reference Distribution 5-2
Reference Divider 5-2
Alarms 5-2
Power Supplies 5-2
PSU ASSY 11-7074 5-3
Power Supply PCB 19-3105 5-3
BATTERY CONTROL PCB 19-3109 5-4
Output Cards 5-5
SINUSOIDAL OUTPUT CARDS 5-5
TTL OUTPUT CARDS 5-6
EXTERNAL REFERENCE/MULTIPLIER BOARD 19-3108 AND 19-3139 5-7
Reference Input 5-8
RF Detector 5-8
Reference Frequency Multiplier 5-8
REFERENCE CHANGEOVER BOARD 19-3172 5-9
Change Over Input 5-10
Change Over Outputs 5-10
Reference Input/RF Detector 5-11
Secondary Frequency Standard Input 5-12
FRS BANDPASS FILTER BOARD 19-3124 5-13
DISPLAY BOARD 19-3107 5-13
Alarms 5-13
Internal Standard Adjust 5-13
Reset 5-14
Other Indicators 5-14
CRYSTAL OSCILLATOR ASSEMBLY 19-3141 5-14
Chapter 6
MAINTENANCE 6-1
Introduction. 6-1
Routine Maintenance 6-1
Test Equipment Required 6-1
Removal And Replacement 6-2
Instrument Covers 6-3
Power Supply Assembly 6-3
Output Card(s) 6-4
Display Board 6-4
Oscillator 6-5
Battery Pack 6-5
Battery Control Board 6-6
Distribution Board 6-6
Diagnostic Connector 6-8
Setting Up Procedures 6-8
Initial Checks 6-8
Unit Status Indication 6-8
Front Panel Outputs 6-9
External Reference/Multiplier Board Indication 6-9
Rubidium Internal Standard Indication 6-9
Battery Back-Up Indication 6-10
AC Mains Indication 6-10
Alarm Function 6-10
Output Card Function and Interaction 6-11
Internal Standard Function And Adjustment 6-11
PSU Maintenance Option (PSO) 6-12
INTRODUCTION 6-12
Description 6-12
Using The Option 6-13
Chapter 7 7-1
PARTS And DIAGRAMS 7-1
Chapter 8 8-1
PRODUCT SUPPORT 8-1
Product Support 8-1
Reshipment Instructions 8-1
Support Offices 8-2

List of Figures

Figure 1-1, 9480 1-1
Figure 2-1, Phase Noise Performance Retrace 2-4
Figure 2-2, Retrace Errors 2-5
Figure 3-1, 9480 Master/Slave System 3-2
Figure 3-2, High Availability 9480 System 3-3
Figure 3-3, Rear Panel 3-5
Figure 4-1, Front Panel 4-2
Figure 4-2, Rear Panel 4-3
Figure 5-1, High Availability 9480 System 5-11
Table 6-1, Test Equipment Required 6-2
Table 6-2, Limit Details of Internal Standard Options 6-8

Chapter 1

TECHNICAL SPECIFICATION

Description

The 9480 Mainframe is housed in a 3U high, 19 inch rack mounting assembly with power supply, time and frequency management system, front panel display, and rear slots for up to eight distribution amplifier output cards.

Figure 1-1, 9480

AC Power Supply Input

DC Power Supply

 InputLine Frequency:
Voltage Ranges:

AC Power Consumption

45-440 Hz
89.5-110.5V (100V)

103-127 V (115V)
192.5-237.5V (215V)

206-254 V (230V)
60 Watts maximum (after warm-up)

External 23.4-30VDC, reverse polarity protection and fuse. DC Current Consumption 1.5 A maximum (after warm-up) Internal, rechargeable battery (option).

Mechanical	Height:	$136.3 \mathrm{~mm}(3 \mathrm{U})$
Dimensions	Width:	425 mm
	Depth:	410 mm
	Weight:	12.5 kg (includes all options but excludes 1.3 kg
	battery pack)	

Environmental
 Specification

Options

Operating Temperature: $\quad-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage Temperature: $\quad-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Humidity: $\quad 95 \% \mathrm{RH}$ at $40^{\circ} \mathrm{C}$
Electromagnetic Compatibility:
Designed to comply with MIL STD 461C Part 4 Navy Sections RE02 (to 1GHz), CE03, CS02, CS06, RS03. Unit remains operational in the presence of a $3 \mathrm{~V} / \mathrm{m}$ interference from 14 kHz to 1 GHz and spikes of 1 kV for 1μ duration and 500 V for 1 m second duration.

Supply Requirements to IEC publications 348

Sinewave Output Cards:
Available Frequencies: $\quad 13 \mathrm{MHz}, 10 \mathrm{MHz}, 5 \mathrm{MHz}, 1 \mathrm{MHz}$ and 100 KHz

Outputs per card: Five
Frequencies per card: One
Maximum number of cards: Eight

Output Power:	$+13 \mathrm{dBm} \pm 2 \mathrm{~dB}$
Output impedance:	50Ω
Output VSWR:	<1.3
Isolation:	$>40 \mathrm{~dB}$ between Outputs
	$>60 \mathrm{~dB}$ between Cards
Output Protection:	Indefinite Short Circuit
	$<500 \mathrm{~mW}$ reverse power
	$>30 \mathrm{Vapplied} \mathrm{DC}$
Harmonics:	$<-30 \mathrm{dBc}$
Sub-harmonics:	$<-70 \mathrm{dBc}$
Spurious:	$<-70 \mathrm{dBc}$

TTL Output Cards:
Available Outputs: $\quad 2.048 \mathrm{MHz}$
Outputs per card: Five
Output level: TTL

Frequency Standard Options

External Frequency Standard

Frequency Multiplier (Option DIV)

Reference Changeover (Option RCO)

Battery Back-Up (Option BBU)

Rubidium FRKL (H)

Frequency:
Signal Level:
Max Safe Level:
Input Impedance:

10 MHz or 13 MHz (see Note 1)
100 mV or 1.2 Vrms (AC coupling)
5 Vrms, 500 VDC blocking
500Ω (at 100 mV - 500 mV input level)

A frequency multiplier option (factory fitted) enables the use of any external standard frequency that is 1 MHz or higher and a submultiple of 10 MHz . The frequency must be within $\pm 1 \times 10^{-5}$ to ensure phase lock.

Note 1: $\quad 13 \mathrm{MHz}$ external standard frequency is needed for 13 MHz outputs and must not be used with option DIV

A (factory installed) reference changeover option is available. This card provides a changeover facility of frequency reference in systems requiring primary and back-up frequency sources.

The internal battery will supply standby power to the Frequency Standard for up to 1 hour. It is used with a Battery Control Board which is part of the battery back-up option (Option BBU).

Frequency Drift: $\quad 4 \times 10^{-11} /\left(1 \times 10^{-11}\right)$ per month
Allan Variance: $\quad 3 \times 10^{-12} /\left(1 \times 10^{-12}\right)$ over 100 seconds
Warm-Up: $\quad<10$ minutes to reach 2×10^{-10} at $25^{\circ} \mathrm{C}$ ambient

Rubidium FRS-C

Quartz 04F

Quartz 04A

PSU Service Option (Option PSO)

Frequency Drift:	5×10^{-11} per month; 5×10^{-10} per year
Allan Variance:	1×10^{-11} over 100 seconds
Warm-Up:	<4 minutes to reach 2×10^{-9} at $25^{\circ} \mathrm{C}$ ambient

Aging:
Allan Variance: $\quad 5 \times 10^{-11}$ over 10 seconds
Phase Noise: $\quad-145 \mathrm{dBc} / \mathrm{Hz}$ at 1 kHz offset
Warm-up: \quad Typically <20 minutes to reach 1×10^{-8} at $25^{\circ} \mathrm{C}$ ambient

Aging:
Warm-up: <6 minutes to reach 1×10^{-7}

This option allows continuous operation of the 9480 while withdrawing and servicing the plug-in PSU. The option is comprised of an internally mounted assembly and a cable.

Chapter 2

GENERAL DESCRIPTION

Introduction

The 9480 Time and Frequency Distribution System is a modular frequency standard ${ }_{1}$ time standard and distribution system. A Companion product the 9481 provides alarm and standby power supply facilities for large systems or systems that require very high availability.

These products offer a high degree of flexibility for designers of satellite systems, calibration systems, test systems and other applications requiring a frequency and/or a time standard.

The system provides a versatile means of generating and distributing a number of highly stable and accurate time signals and output frequencies derived from a self-contained, accurate atomic oscillator with a long term stability better than $10^{-9} /$ year. High quality crystal standard options are also available.

The mainframe houses a Power Supply Unit, Distribution Board, Display Board and up to eight Output Cards. It can accept the following optional items: internal frequency standard, external reference board and battery back-up pack.

The system can operate as a simple five output distribution amplifier or a complex system time and frequency standard with multiple frequency outputs.

Up to 40 individual outputs at 1 V level, 50Ω impedance, can be provided, eight cards of five outputs each. A wide range of output frequency combinations can be configured.

The system may be operated as a slave and will switch over automatically when a suitable external input frequency is applied.

All options are retrofitable, enabling user to build up the system over a period of time without redundancy.

The unit operates from AC mains or an external DC, or from an internal battery back-up.

The unit is 136.3 mm high (3U) and is suitable for standard 19
inch rack mounting.

9480 DESCRIPTION

Applications

THE 9480 SYSTEM

Frequency Standards External

The heart of the system is the time and frequency mainframe. This houses a power supply and the frequency and time management sub-system. The mainframe has the capacity for either an oven controlled crystal oscillator or rubidium frequency standard, a digital clock display, a battery back-up supply and up to eight, five-output, distribution amplifiers.

Distribution amplifier output cards are available in frequencies of $100 \mathrm{kHz}, 1 \mathrm{MHz}, 5 \mathrm{MHz}, 10 \mathrm{MHz}, 13 \mathrm{MHz}$ and TTL output cards of 2.048 MHz and 13 MHz .

The 9480 is suited to requirements demanding a precision time reference, frequency reference and/or distribution system.

For satellite ground stations there are a range of options, including low noise frequency standards. For calibration laboratories, up to 40 outputs can be distributed from a single mainframe.

15 For UHF Quasi-Sync systems or Simulcast Systems, the flexible number of outputs and frequencies is ideal for phaselocking transmitter/receiver base stations. The FRS rubidium standard achieves the desired stability without the necessity of frequent oscillator calibration or expensive environmental controls.

When selecting a suitable frequency and/or time standard and distribution system, consideration is given to:
(a) Frequency standard accuracy.
(b) Power supply requirements.
(c) Number and frequency of outputs.

The 9480 can be used as a frequency distribution system, fed by an external standard. Under these circumstances, it may have a standard installed in the 9480 as a back-up. The 9480 will then switch automatically to its internal standard if the external input is lost or is not available.

The 9480 mainframe has a range of frequency standard options that include three (FRK-L, FRK-H, FRS-C) rubidium oscillators,
a high stability ovened crystal oscillator, a fast warm-up ovened crystal oscillator and a low phase noise, high stability, ovened crystal oscillator.

The choice of a frequency standard will depend on the application and consideration of Aging, Allan Variance, Phase Noise and Retrace Error.

Available Standards

Aging

FRK-L and FRK-H are ultra-stable, rubidium atomic oscillators with drift values of 4×10^{-11} and 1×10^{-11} respectively. For references which are later multiplied into the Gigahertz range a low phase noise option Is available.

FRS Is a lower cost, yet extremely stable atomic oscillator. It has a one month drift of 5×10^{-11} and warms-up in less than four minutes.

04F is a precision ovened crystal oscillator which combines 2 x 10^{-10} /day aging with very low phase noise.

04A is a fast warm-up, oven controlled crystal. oscillator. It has an aging characteristic of $3 \times 10^{-9} /$ day and warms-up in less than 4 minutes.

Aging is the way in which an oscillator's frequency changes with time, stated as fractions of a Hertz per time period. Short term stability is stated for time periods of less than 100 seconds, whereas long term stability is stated for time periods of one day or more.

In general, aging occurs exponentially and is greatest during the first month of operation. Sometimes even high quality crystal oscillators may not be good enough for applications such as UHF quasi-sync or Simulcast systems, where accuracy's of $1 \times$ 10^{-9} are required. Such accuracy can be achieved with a crystal but will require frequent adjustment and careful temperature control.

In contrast, a rubidium oscillator would only drift by 1×10^{-10} per year, but are more expensive than crystal oscillators.

Allan Variance is used to characterize the long and short term stability of precision oscillators. It is a statistical method of presenting the average variance in frequency over a given time at a chosen sample interval. Mathematically it is expressed as:

Allan Variance

$$
\sigma_{y}^{2}(\tau)=\frac{1}{2 m} \sum_{k=1}^{m}\left(\bar{y}_{k+1}-\bar{y}_{k}\right)^{2}
$$

where

$$
\mathrm{y}_{\mathrm{k}}=\frac{\phi\left(\mathrm{t}_{\mathrm{k}}+\tau\right)-\phi\left(\mathrm{t}_{\mathrm{k}}\right)}{2 \pi \nu_{\mathrm{o}} \tau}
$$

$\phi\left(\mathrm{t}_{\mathrm{k}}\right)$ is the phase at time t_{k}
v_{o} is the frequency at which the phase measurement is made
m is the number of samples

Phase Noise

Phase Noise is a measure of the random fluctuations in frequency or phase due to noise. It is normally measured in a 1 Hz bandwidth at various frequency offsets from the fundamental frequency. Close-to-carrier noise is generated by the standard itself but at offsets of 1 MHz or more noise due to the frequency distribution system predominates. The 9480 uses low noise amplifiers throughout that have little effect on the quality of the standard. Figure 2-2 shows typical phase noise plots of the various standard option.

Figure 2-1, Phase Noise Performance Retrace
Retrace
Retrace is a particular problem of quartz crystal oscillators and is a shifted frequency offset caused by removing and reapplying power. Refer to Figure 2.3. In order to prevent retrace errors, the 9480 is available with an internal battery supply, which maintains supply to the oscillator in the event of loss of
primary power.

Figure 2-2, Retrace Errors

Power Supplies

The 9480 has a flexible power supply arrangement to ensure that supply to the frequency standard is maintained, thus eliminating retrace problems.

The power supply is a hierarchical system and features automatic switch over. The primary power is 89.5 to 254 Volts AC; if this is absent the unit automatically selects an externally applied 23.4-30 Volts DC and if this is absent the 9480 will select the optional internal rechargeable battery.

This page was left intentionally blank.

Chapter 3
PREPARATION FOR USE

Introduction

Unpacking

To prepare the 9480 Mainframe for operational use, proceed as follows.

Examination

Output Card Description

Future Expansion

At the rear of the 9480 Mainframe are slots for up to eight output cards. Each card has five buffered outputs available in frequencies of $13 \mathrm{MHz}, 10 \mathrm{MHz}, 5 \mathrm{MHz}_{1} 1 \mathrm{MHz}$ and 100 kHz .

A 2.048 MHz TTL output card can also be fitted.
A maximum of 40 outputs is available, five from each of the eight cards.
The Time and Frequency Mainframe 9480 is delivered from manufacturer to customer in a protective transit case packaging.

Carefully remove the unit from its sealed polythene bag and its protective package.

Visually inspect the unit for any damage caused by transit. Any defects should be noted on the appropriate form attached and reported to the Carrier and Company promptly.

Check for customer requested options and report any anomalies.

For expansion to the time and frequency distribution system, additional output cards can be fitted to the mainframe at a future date.

The quartz frequency standard can also be upgraded to a rubidium standard without the need to purchase a second mainframe.

External Standard

If an external frequency standard is available, this is to be connected to the card fitted in the left most slot, as viewed from the rear of the unit. An External Standard card Is factory fitted and can accept 10 MHz or 13 MHz signals. An External Multiplier option card accepts signal inputs of $1 \mathrm{MHz}, 2 \mathrm{MHz}, 5$ MHz or 10 MHz . A Reference Changeover option card accepts a 10 MHz signal only.

For large frequency distribution systems that require multiple outputs, the facility exists for 9480 s to be daisy-chained together. In this configuration the Master 9480 is the one with the frequency standard and the front panel Monitor output is connected to the EXT STD I/P on the rear panel of the slave 9480s. See Figure 3-1 for connections.

Figure 3-1, 9480 Master/Slave System

Where the continuous availability of a frequency standard signal is of paramount importance, the 9480 units can be configured as shown in Figure 3.2. This arrangement ensures automatic changeover to a second frequency standard if the prime standard should fail. Standards are connected to a Reference Changeover card in a 9480 serving as a distribution unit.

Figure 3-2, High Availability 9480 System
The two power inputs of the 9840 can also be utilized to provide a secondary power, back up, facility.

9481 Product Interfaces

A companion product, the 9481, is designed to provide standby power and alarm facilities for 9480 systems to ensure availability of standard signals. A 9481 unit provides the following services:-
(1) A Standby DC supply of +24 V from a mains power supply.
(2) A comprehensive local alarm facility for multiple 9480 system to allow quick and easy Interpretation of the fault.
(3) A remote alarm option for sending alarm information via an R5232C interface to a remote monitoring base.

Power Supply System

The 9480 mainframe has a hierarchical power supply system to ensure that the supply to the frequency standard is maintained.

The unit can be operated from mains AC power ${ }_{1}$ external DC or from an internal battery for the reference standard. The unit features automatic switch over to the connected power supply.

Primary power is from an AC source in the 89.5-254 Volts AC range. If this is absent, the unit automatically selects an externally applied 23.4-30 Volts DC. In the absence of a DC source, the 9480 will select an internal rechargeable battery, if fitted.

ACIDC Lines

The AC and DC power lines are connected at the rear panel and are fused for circuit protection.

Check that the correct fuse rating is fitted for the available power supply. Refer to the rear panel label. Figure 3-3, for this information.

AC Line Select

Access to the AC input selection for setting one of the four voltage ranges is gained by releasing the plastic cover on the AC LINE input connector.

The correct voltage is set by rotating the drum.
The internal line fuse should be the correct one for the range as displayed on the panel.

Internal Battery

An internal battery pack, if fitted as an option, is designed to supply standard power to the Frequency Standard for a period of up to one hour. It is used in conjunction with a Battery Control Board that is supplied as part of the Battery Back-up option (BBU).

A Battery Control Board (if fitted) carries a BATTERY ENABLE switch. Use of this switch allows the battery to be temporarily disconnected. This facility allows the 9480 to be disconnected from external power supplies without activating the Battery Back-up facility.

If the top cover Is on the 9480, access to the battery switch is gained after removing a rubber plug in the cover.

The battery enabled position is when the switch lever is moved towards the heatsink. This is the normal position when operating from an external AC or DC source.

If the unit is non-operational for periods of time, the battery enable should be switched off to conserve energy.

Rack Mounting

Slide the unit into its rack position. It is recommended as a twoman operation.

Make the AC/DC power and any other connections at the rear.
Secure the unit to the rack.
Switch on the appropriate power button at the Rear Panel.
See Section Four for an interpretation of front panel indications.

Figure 3-3, Rear Panel

This page was left intentionally blank.

Chapter 4

OPERATING INSTRUCTIONS

Master Or Slave Operation

Reference

 Changeover
Operational Voltages

Front Panel Features

The unit can be set to operate from one of four AC line voltages (100, 120, 220 or $240 \mathrm{~V} \pm 10,5 \%$) in the 45 to 440 Hz frequency range. An external DC supply in the 23 to 30 V range can also be used as source or an internal battery, if fitted. The 9480 unit automatically switches from AC to DC or battery in its selection of power source.
The 9480 unit may be used as a master for time and frequency signals or as a slave. In a slaved condition n_{1} it will automatically switch over when a suitable, external, signal frequency is applied to External Reference Card at the rear of the unit. This is usually a 10 MHz signal or a 13 MHz external signal for 13 MHz outputs, taken from the monitor output of the Master 9480.

A reference changeover option is available. This card provides an automatic changeover to a back-up (secondary) frequency standard if the prime standard should fail. The primary frequency generation (PFG) and the secondary frequency generation (SFG) inputs are to the same specification as the External frequency standard.

The front panel has the following indications and controls (See the front panel in Figure 4-1):

Figure 4-1, Front Panel

Output Failure (OUTPUT CARDS)

Frequency Lock (LOCK)

Power Source (POWER)

There are eight LED indicators, one for each OUTPUT CARD. An LED is lit when all five outputs from a card are functioning. An LED will flash if any of its outputs fails and extinguishes when a card is absent.

The LED will come back on when normal functioning is restored, but a failure triggers a flashing "General Alarm" and the alarm line remains activated until it is reset by the operator.

This indication is lit when the frequency standard is in LOCK. If the frequency multiplexer option from the external standard is fitted, that too must be in lock before the LED will light. An LED off denotes an unlocked condition.

This indicator is lit when an external frequency standard is present at the rear panel giving rise to an automatic changeover from internal to external standard.

Three separate indicators for a choice of the power source, line AC, line DC or internal battery.

If both AC and DC power inputs are present, the 9480 automatically selects the AC input. If both AC and DC fail, the internal battery, if fitted and enabled, will power the internal frequency standard, but not the rest of the 9480 circuits.

The ALARM LED will flash if any of the output LEDs has Indicated failure. It can be reset by depressing the RESET push button, provided the fault condition is no longer present.

OUTPUTS

INTERNAL STANDARD ADJUST

REAR PANEL
(See Figure 4-2 for the rear panel)

Figure 4-2, Rear Panel
This is a combined fuse and mains input socket and supply selection.

Mains Input

Two BNC connectors are available on the front panel for output signal monitoring and the 1 pulse-per-second output.

A $0.3 \mathrm{~V} \pm 0.1 \mathrm{~V} p-\mathrm{p}$, into a 50 ohm load, monitor output signal is available at the principal internal frequency (10 MHz or 13 MHz) or at 1 MHz . The waveform is substantially square wave and AC coupled.

A $0.3 \mathrm{~V} \pm 0.1 \mathrm{~V}$ p-p (into a 50 ohm load, or TTL compatible into open circuit) square wave signal at 1 Hz is available at the 1 PPS socket. This signal is derived from the internal or external frequency standard and Is DC coupled.

This is a recessed Vernier control for fine adjustment of frequency standard. Coarse adjustment of 04A and 04B options is through the top cover on its right hand side.

DC Input

This is a polarized, external DC input connector. See Figure 3.3 for the pin outs, the two pins on the left are commoned internally for the +ve supply, the two on the right for the -ve supply.

External PPS
 (Option)

This is the external input for 1 PPS signal.

10MHz Input

This is the plug-in card for external standard or option 9480-DIV. This is normally a $10 \mathrm{MHz}, 100 \mathrm{mV}$ to $1 \mathrm{~V} \mathrm{rms}, 50$ ohm signal.

Diagnostic

Connector
Lines in the connector are used to monitor the status on the frequency standard, Its battery supply and the Alarm line condition.

The pin out detail is as follows:

Pins	Functions
1	Alarm (Logic 1 = Alarm)
2	BATT. ON line (Logic 1 = BATT. ON)
3	External Reference line (Logic 1 = External Signal Present)
4	Rubidium oscillator control voltage
5	Oscillator in lock (Logic $1=$ In Lock)
6	GND (System earth)
7	AC/DC* Input (Logic 1 = AC Input)
8	Master Reset* (Logic 0 input will reset the 9480 alarm)
9	Spare

Chapter 5

TECHNICAL DESCRIPTION

Introduction

Distribution Board 19-3106

This section provides the circuit descriptions for all the 9480 electronics boards and assemblies, including the output card options.

The circuit diagram is shown in Figure 1

The distribution board forms the hub of the 9480 system. It provides the interconnection between all the other boards that make up a system. It also carries the functions described below

This circuit selects between internal and external frequency standards, when an internal oscillator is used, or PFG (primary frequency standard) and secondary frequency standard (SFG), when a reference change over board (19-3172) is used.

The SMC connector PL202 provides the signal from the internal standard. It is amplified and squared by the discrete long-tailed pair formed of Q201 and Q202. There is a transistor switch Q203 in the base that facilitates the switching off of this circuit.

The reference can also be supplied from the reference change over board via SK209 pins A3/B3.

Two reed relays, RL201 that is a normally closed type, and RL202 that is normally open effect the selection. Both are driven from the EXT signal line from the EXT REF slot connector SK209. When EXT is driven, RL202 connects in the external reference signal from SKI09, and the internal standard amplifier long tailed pair is switched off Otherwise RL201 connects in the internal standard signal from the long tailed pair.

The reference selection circuit can be bypassed when using the reference change over board and the reference supplied to U202/13 directly, from SK209 pins A5/B5.

Reference Distribution

Reference Divider

Alarms

Eight alarm signals from the eight slot connectors S~01-8 are routed independently to the display board via PL203. Present FAULTS 1-8 are ORed together in U204 and set effectively an SR flip-flop U205 which takes the ALARM signal high. This signal is taken to the display board via PL203 and also to a BUZZER ALARM driven by an open collector transistor driver Q204 connected to PL218. A RESET signal from the display board, via the connector PL203, facilitates the resetting of the flip-flop and the clearing of the alarm.

Power Supplies

Two rails 4.9 V and 22.5 V are provided by the power supply via the connector SK210. These are filtered by a simple 2-pole LC network, supply the board circuits and are routed around the
various connectors as required.
The internal standard supply 'RRBF, available on PL201, originates from the battery control board via PL209 through an LC filter. If the battery option is not fitted, PL209 may take jumpers to select either 4.9 V or 22.5 V .

PSU ASSY 11-7074

The circuit diagram is shown in Figure 2.
This is in the form of a removable chassis. On the chassis is mounted a combined mains inlet socket and filter, mains on/off switch, transformer, bridge rectifier, socket and switch for DC input, 10 W resistor, fuse holders and Power Supply PCB. Connections on the chassis include AC and DC inputs, and power resistor, to the Power Supply PCB (19-3105).

Power Supply PCB

19-3105
The circuit diagram is shown in Figure 3
This circuit is based around a 5 volt reference D110. This is used via pot R124 to provide an adjustable reference for both the 4.9 V and 22.5 V circuits. The AC input from the PSU ASSY is smoothed, regulated by U 102 to produce 23.1 V which is applied to D114. The DC input is processed by U101C, Q103 and Q104 to produce 22.9 V which is supplied to the other anode of D114.

If the $A C$ input is present U101A and Q101 inhibit the DC supply by reducing the reference applied to U101. If the DC supply is present and the AC disconnected, D114 conducts to apply 22.5 V from the DC source. The 4.9 V supply is derived from the 22.5 V by U101B, Q105 and Q106. Q107, R134 and D111 provide overvoltage protection on the 4.9 V supply.

BATTERY CONTROL The circuit diagram is shown in Figure 4. PCB 19-3109
 This circuit contains:-

1) A battery charge/operate change over relay.
2) Two battery trickle/main charge circuits.
3) A battery enable/disable switch.
4) A low battery disable protection circuit.
5) A charging tinier circuit with reset.

This circuit co-ordinates the enabling and disabling of battery power and charging functions. It contains protection circuits that ensure the batteries are not overcharged or over-discharged.

There is a battery charge/operate change over relay RL501 which in the de-energized state supplies power from the batteries provided the battery enable/disable switch 5W501 is enabled. In this state 21 nickel cadmium cells are connected in series across TP502 and GND. Provided the initial voltage of the cells is greater than +25 V as sensed by U501, Q503 will be turned on to supply VRB at pins 2 and 4 of PL501.

Pin 8 of PL501 'BATT ON' will be approximately at +5 V . When the battery voltage falls below approximately $+22 \mathrm{~V}, \mathrm{Q} 503$ is turned off by Q502 and U501.

In the de-energized state of RL501 with SW501 enabled, the batteries are charged. There are 2 separate charging circuits, one for the 14 cell pack and one for the 7 cell pack. Both packs are charged at approx. 120 mA for 16 hours and then trickle charged at 14 mA thereafter. The main charge is started by a ' 1 ' on BATT* and the 1 kHz signal applied to U504B and C. This results in an incremental counting for 16 hours of counters U502 and U503 when U504A will switch off the main charge via Q510. The main charge for both battery packs is with Q510 switched on which results in Q507 switching on the main charging current of approx. 104 mA via R537, R538, R539 with the trickle current via R523 and R524 for the 7 cell pack. Q506 is also enabled by Q510 to turn on the main charge for the 14 cell pack.

The constant current of approx. 102 mA flows via R519, R520, Q506, Q507 and the battery. The constant trickle current also flows via RS18, Q505, D507 and the battery.

Output Cards

SINUSOIDAL OUTPUT CARDS

the 10 MHz standard. U3 is a presettable divide by 16 binary counter that is preset to 3 and resets at 13. This is done by NANDing the QC and QD outputs in U4A to provide a LOAD signal to U3/9. This provides another $\div 10$ stage to bring the frequency applied to the filter network down to 100 kHz . Selected components are used in the filter and output stage (see Figure 5).

1MHz 19-3103
This has U3 fitted, which in a similar manner to the 100 kHz board (above) provides $\mathrm{a} \div 10$ stage to produce the output frequency from the 10 MHz standard. Selected components are used in the filter and output stage (see Figure 5).

This has U3 fitted (which is preset to 3). The LOAD signal is still taken from U4A, but the inputs to U4A are different to the previous boards (due to selectable links). Two inputs are taken high, the third is connected to the QC output of U3. This has the effect of taking the QC output, inverting it and applying it to the LOAD input of U3. When the Q outputs of U3 are preset to 3, QC is high, the next state (4) forces QC low which has the effect of applying a LOAD signal to U3 (via U4A) which the presets U3 Q outputs to 3 again. The QC output then goes high (the next state) again and the whole process is repeated. This has produced $\mathrm{a} \div 2$ stage to obtain the required 5 MHz . Selected components are used in the filter and output stage (see Figure 5).

10MHz 19-3101
This board does not have U2 or U3 fitted. The 10 MHz standard is applied to U4A then U4B/U4C which all act as buffers. The signal is then filtered as in the other cards. Selected components are used in the filter and output stage (see Figure 5).

13MHz 19-3100
This board is identical to 19-3101 except for the selected filter and output stage components (see Figure 5). The 13 MHz output frequency is obtained by using a 13 MHz internal standard in the 9480 mainframe. Consequently 13 MHz output cards cannot be used with any other frequency options in the same mainframe and vice-versa.

TTL OUTPUT CARDS

2.048MHz 19-3125

EXTERNAL

REFERENCE/MULTIP LIER BOARD 19-3108

See circuit diagram shown in Figure 6.
This card will only operate in a 9480 mainframe with a 10 MHz frequency standard present. The circuit is a phase locked loop (PLL), which locks a divided down 10MHz with a divided down VCXO.

The 10 MHz standard is buffered then applied to a 12 bit synchronous counter (U2, U3 and U4 paralleled) which is preset to $\mathrm{B}_{1} \mathrm{E}_{\mathrm{H}}$. This gives a division of $4 \mathrm{E} 2_{\mathrm{H}}\left(1250_{10}\right)$ resulting in an 8 kHz signal at $\mathrm{U} 4 / 12$. This signal is applied to the R (reference) input of U5 (U5/1). U5 is a digital phase detector. The other input, $\mathrm{U} / 3$ is divided down from the VCXO and is 8 kHz when in lock. The error signal from the phase detector US is applied to the loop filter U6 (and associated components). The output of the filter, a mean DC level is applied to the VCXO, U7. The VCXO is a 16.384 MHz type. Its output is buffered and then divided down to 2.048 MHz at $\mathrm{U} 8 / 12$. The 2.048 MHz square wave is taken off to the output stages and also fed to dividers U9 and U10. U9 and U10 are configured as a synchronous $\div \mathrm{FFH}\left(\div 256_{10}\right)$ counter to provide the signal to lock to the 8 kHz derived from the 10 MHz standard.

A small phase offset is introduced into the loop by R38, R40 and C26 to allow for any differences (within tolerance) in component values between different cards, that would cause notable changes in the steady state operating conditions between those cards.

The 2.048 MHz square wave from U8/U12 is applied to output driver U13. Five outputs are taken from U13. Each output has a protection circuit. At the first output (SK1), R12/R29 provide short circuit protection and with D6/D7 also provide applied overvoltage protection. In the case of a DC voltage being applied to an output, D25, R41 and Q7 sink any extra current put onto the supply rail and prevent the rail being pulled up above approx. 5.6 V . Each output is monitored and should an output fail then the FAULT line is pulled high by U14 and an alarm signal generated in the 9480 mainframe.

The 2.048 MHz output card makes use of well decoupled supplies for separate parts of the circuit to reduce the overall noise present in the circuit. The 22.5 V supply is brought down to above 7 volts by Q6 that in turn feeds Q2 - Q5. U6 is supplied from Q1.

The circuit diagram is shown in Figure 7.
The External Reference/Multiplier is a card physically compatible with the external reference slot of the 9480. The

AND 19-3139

Reference Input

RF Detector

Reference Frequency Multiplier

Input Circuit and Pulse Generator

This circuit detects the presence of an input reference signal and drives the EXT line high when it exceeds a preset level. The signal is taken from clipping diodes D30 1 and D302 of the input circuit, and feeds a high sensitivity detector formed around the biased Schottky diode D305. A comparator U301, with a little hysteresis added, is used to compare the detector output with a reference chain that includes the preset R314, and another Schottky diode D307 for temperature compensation. This preset facilitates an adjustment of the detector threshold. The comparator drives a two transistor chain Q303 and Q304 which performs the EXT line switching.

This is the 19-3139 version which utilizes a phase4ocked loop circuit to accept the submultiples of 10 MHz , which are 1, 2, 5 and 10 MHz signals. Links L301 and L302 on the board are selected to route the signal through the multiplier circuit. A pulse generator output is connected to a phase detector and forms a reference signal for the phase-locked loop.

The waveform from the input amplifier is squared in U302A before the pulse generator, U302B and U302C. Negative-going pulses at U302C switch Q306, which drives the transmission line type transformer, T301. The transformer is used as a phase splitter, so that for the duration of each pulse from U302C, the sampling bridge of the phase detector is held forward-biased,
board receives an external reference signal on a board mounted BNC connector that is accessible on the rear panel of the 9480. This signal is conditioned and fed to the Distribution Board. A detector signals to the Distribution Board, via the EXT line, the presence of an external reference signal.

The board is common to two variants: the 19-3108 takes a 10 MHz reference signal only, while the 19-3139 utilizes a PLL multiplier circuit to accept 1, 2, 5 and 10 MHz signals

The reference signal at SK301 is filtered by a three pole elliptic and clipped by a pair of reverse parallel signal diodes D301 and D302. The amplifier/limiter formed around the long tailed pair Q301, Q302 serves to normalize a wide input level range to a square wave compatible with TI " levels. This amplifier is switched off by a low on the EXT line of plug PL301.

The output is directed by the link choices at LK301 and LK302, either to the board connector PL301 in the case of the 19-3108, or around the multiplier circuit in the case of the 19-3139.
with the D309/D310 and D311/D312 junctions symmetrical about 0 V .

Phase-Locked Loop

The loop oscillator active element is Q309. The oscillator frequency is controlled by the crystal XL301 and the varacter diode D313. Trimming capacitor C328 can be adjusted manually to compensate for a range of crystal and varacter tolerances.

The oscillator output drives a unity gain cascade buffer Q307, Q308. Buffered RF from Q307 is the input to the phase detector bridge.

When the bridge of the phase detector is forward-biased by the pulses from T301, the D309, D311 junction adopts the same potential as the D310, D312 junction. At other times the junctions are isolated from each other by the high impedance of the non-conducting diodes. The bridge output is therefore a series of samples of the loop oscillator waveform, taken at the frequency of the external frequency standard.

The phase detector output depends upon the relative frequency of the oscillator and the frequency standard, and the phase of the oscillator waveform at the instant of sampling. If the standard frequency is 10 MHz , every cycle of the oscillator output is sampled. For sub-multiples of 10 MHz only every second, fourth, fifth and tenth cycle will be sampled. In every case, samples are of constant amplitude, if the standard frequency is an exact sub-multiple of the oscillator frequency. If the standard frequency is not an exact sub-multiple, output pulses will be amplitude modulated.

The amplitude of each phase detector output pulse depends on the instant value of the oscillator waveform at the time of sampling. Pulses are integrated in C323 that supplies the input to the loop amplifier U303. when the loop is in lock the voltage across C323 maintains the voltage at U303/6, and therefore across the varacter, at the level needed to maintain the oscillator at the lock frequency.

An output amplifier and a MULOCK control circuit are added to the output. The amplifier formed of Q310 and Q311 is identical to the input amplifier detailed above in the Reference Input paragraph. The MULOCK circuit, formed of D314 and Q312, is a simple signal detector which drives the MULOCK line low whilst EXTSTD is driven high, and a multiplier output is not present.

REFERENCE

The circuit diagram is shown in Figure 8.

CHANGEOVER BOARD 19-3172

Change Over Input

Change Over Outputs

The reference change over board fits in the same slot as the External Reference/Multiplier (19-3108/19-3139) boards. It essentially performs the function of choosing one of two different external 10 MHz frequency sources. One source is known as the primary frequency generator (PFG input, SK301), the other as the secondary standard input (SK302). The choice of the reference signal to be applied to the Distribution Board (193106) depends on varying conditions:
(1) If PFG is in 'LOCK', signal level OK, then the PFG is selected.
(2) If PFG out of 'LOCK' or signal level low, the secondary standard is selected.
(3) If SW1 set to 'BYPASS', the secondary standard is selected.

A typical system using the change over board would have a 9480 containing the primary standard, a 9480 containing the secondary standard and one or several 9480's containing output cards for the reference frequency distribution. See Figure 5.1.

This enables a distribution 9480 to change between its PFG and secondary standard inputs. A logic '1' on this line would cause the PFG input to be active via PL301 A1/B1, and logic ' 0 ' chooses the secondary standard input via PL301 A3/B3. The input in connected to one of the three change over outputs on the 9480 primary standard unit's change over board. Note that when SW1 is set to 'BYPASS' the PFG input is inhibited regardless of the state of the change over input.

When used by the 9480 primary standard unit, the change over input is unused and must be pulled high by linking pins 2 and 3 of PL305. When used in reference frequency distribution 9480s, pins 1 and 2 must be linked.

The change over outputs are used by the 9480 primary standard unit only. Three paralleled outputs are available, which are connected to the change over inputs on the reference frequency distribution 9480s, as previously mentioned. These outputs are used to indicate that the 9480 primary standard unit's internal oscillator has gone out of lock, and so force each reference frequency distribution 9480 to switch from primary standard to secondary standard operation. If the rubidium is out of lock PL301 pins A6/B6 ('RBLOCK') will go low, which turns Q315 and Q317 off and the change over output gets pulled low. when in lock, the 'RBLOCK' line goes high turning Q315 and Q317 on,
setting the change over output high.

Reference Input/RF Detector

The Reference Input/RF Detector for the 19-3172 is as described in previous paragraphs for the 19-3108/19-3139 boards. when the EXT line is driven high by Q304 the secondary standard input is inhibited and the PFG input amplifier active. Q304 can be turned off (and 'EXT' go low), irrespective of the PFG input level by a '0' on the change over input, (SK303), or SW1 set to 'BYPASS'.

Figure 5-1, High Availability 9480 System

The 9480 primary standard unit's change over board is used to provide change over outputs via PL302-304.

The 9480's used for reference frequency distribution have signals PFG and secondary frequency standard applied to SK301 and SK302 together with the change over signal from the 9480 primary frequency standard.

The PFG signal connected to SK301 is usually derived from a high quality frequency standard, typically a rubidium oscillator. The secondary standard signal connected to SK302 is again usually a high quality standard and is used as a back up to the primary standard.

The change over board is intended to be used in systems that must have high availability of the reference frequency, the secondary frequency standard acts as redundancy in such a system.

One or more 9480s fitted with output cards (19-3100-19-3104) are used to distribute the appropriate source (PFG or secondary standard input) and are referred to as reference frequency distribution 9480s. when a reference change over board is used in PFG or secondary frequency standard 9480s, pins 2 and 3 of PL305 must be linked with a jumper, or else install the jumper to pins 1 and 2.

Note If an internal frequency standard is not supplied and a change over board is fitted to a 9480, a shorting link is fitted in position LK201 on the Distribution Board. If an internal standard is fitted, this connection is not made and the Berg header, used in linking, is located on pins 2 and 3 of PL208, connected to ground.

Secondary Frequency Standard Input

The reference signal from SK302 is amplified/buffered by the long tailed pair Q310 and Q311 in the same manner as the PFG reference input. The signal is then buffered further by U302 and passed to SW1A. The Normal/Bypass switch, SW1, allows the signal to be passed to either pins A3/B3 or A5/B5 of PL301. SW1 is used to enable the signal to bypass the switching circuits on the Distribution Board 19-3106, its usual operating position is with it set to 'Normal'. The amplifier is switched off by Q316 and a logic 1 on the EXT line. When used in a 9480 reference frequency distribution unit, the amplifier is switched off if,
(1) The primary frequency generator input is present (this sets EXT to '1').
or
(2) The change over input at SK303 is a ' 1 '.

FRS BANDPASS

 FILTER BOARD 193124The circuit diagram is shown in Figure 9.
The filter is used for suppression of unwanted spurious signals on the output of the Rubidium FRS-C and FRK-L frequency standards. It is a simple circuit built on a small PCB with input and output ports being provided by board mounted SMC connectors. The board is enclosed in a small Eddystone diecast box.

The filter is a 3 pole Butterworth design, transposed to a bandpass response on a center frequency of 10 MHz . A 56 ohm resistor terminates the output.

The display board provides the user interface of the 9480. It has LED indicators and operators push buttons together with associated electronics.

The circuit diagram is shown in Figure 10.

Eight LED indicators, D401 to D408 labeled "1" to "8" respectively, indicate the individual slot status. For each, the configuration formed of a NAND gate and an open drain inverter around the LED is driven from the Lines FAULT1,8 and LD1,8 from the board connector SK401. While a board is installed and its fault line is low, the LED is lit continuously; if high, it flashes. The LED is extinguished when no card is installed.

Flashing occurs by gating a low rate square wave with one input of the NAND gate. This signal is generated by a multivibrator formed of the Schinift NAND U401A, and may be disabled by a low on the ALARM signal. The output is also used to flash the "ALARM" LED D409 via the buffer U401B.

The multiturn pot R423 serves as a fine tuning adjustment for the internal standard. Its three connections are brought out on the board connector SK401.

Reset

The "RESET" push button SW401 is debounced by the circuit around the Schinitt NAND U401C and U401D. This drives the RESET* signal appearing on the board connector SK401.

The LED indicators, D410, D411, D412 and D413 labeled "EXT STD", "LOCK", "AC" and "DC" respectively are driven by open drain buffers U405A, B, C and D from signals appearing of the board connector PLA01. The indicator D414 "BATTERY" is connected directly to PL401.

CRYSTAL OSCILLATOR ASSEMBLY 19-3141

The circuit diagram is shown in Figure 11.
The circuit produces a 10 MHz standard output from an input from a 5 MHz quartz crystal oscillator assembly, by a process of frequency doubling.

The 5 MHz signal is applied to a balanced transistor amplifier on Q1 and Q2. Differential outputs from the amplifier drive the base of Q3 via diodes D1 and D2. The result is a doubled frequency of 10 MHz at Q 3 .

The 10 MHz signal is amplified and filtered in the gain stages of Q3 and Q5, and fed to plug PL2 via the output buffer stages, Q6 and Q7. The tuned transformers T1 and T2 provide the first and second stages of filtering for the 10 MHz signal.

Q4 detects the output level. The output signal is returned by C6 to switch Q4 on, during positive peaks of signal. The gain of Q5 is controlled by the potential across capacitor C3 which changes via R12 and is discharged through Q4. If the output level increases, the time for which Q4 conducts increases dropping the mean potential across C3. The resulting decrease in gain of Q5 provides automatic level control (ALC).

Chapter 6

Introduction

Routine Maintenance

The 9480 chassis mainframe holds as standard a reference board, a distribution board, a display board and a power supply assembly. To meet customer specific requirements, options that can be installed are a choice of output cards, a Nickel Cadmium battery and battery control board and an internal reference oscillator.

There is no routine maintenance associated with the 9480.

Test Equipment Required

The maintenance procedures will require the use of the test equipment of Table 6.1 or their equivalents.

Instructions are given on dismantling and reassembly into the frame of all boards and assemblies.

WARNING: LETHAL VOLTAGE
DANGEROUS AC VOLTAGES ARE EXPOSED IF THE INSTRUMENT COVERS ARE REMOVED WITH THE AC SUPPLY CONNECTED. SWITCH AC OFF AND DISCONNECT SUPPLY BEFORE WORKING ON INSTRUMENT. LEAVE DC INPUT CONNECTED AND SWITCHED ON.

Much of the dismantling procedure can be performed with the aid of a PosiDriv screw driver set.

The first step is top cover removal to gain access to internal electronics and removal of the backplate is necessary to release the fitted output cards, the external reference card and PSU assembly.

Table 6-1, Test Equipment Required

Item	Description of Recommended Model	Required Parameters			
1	Digital Multimeter, Racal 4005	AC voltage range 250 V min. DC voltage range 30 V mm. Accuracy $\pm 2 \%$ or better.			
2	RF Millivoltmeter, Racal 9301A	Frequency range 100 kHz to 20MHz. Input level at least +15 dBm. Accuracy $\pm 2 \%$.			
3	Spectrum Analyzer, HP8568A	Frequency range 100kHz to 100MHz. Max. input level at least +15 dBm. Dynamic range at least 80dB.			
4	Oscilloscope, HP1740A	Bandwidth greater than 45MHz			
5	Signal Generator, Racal 9081	Frequency range at least 1 MHz to 13MHz max. Output level at least -7dBm.			
6	Counter, Racal 1992	Frequency range at least 1 Hz to $13 M H z ~ w i t h ~ 50 o h m ~ s i g n a l ~ i n p u t ~$			
and external standard input.			$	$	Resolution range to at least 1 p
:---					
in 1011.					

Removal And Replacement

The removal procedures are applicable to model serial numbers 1071 onwards.

Instrument Covers

Disconnect the AC power input line from the rear panel. In systems where maximum availability of the reference signals is required, leave any DC input connected and on, otherwise switch off and disconnect.

Remove the fifteen screws from the top cover.
Release the two screws in the top bezel of the front panel, but do not remove.

Move the top cover clear of chassis.
To replace the top cover, slide it under the front bezel and close down the two screws.

Replace and tighten the fifteen screws into the top cover.

Power Supply Assembly

The top cover should be removed first, as described above.
In cases where there has been an AC PSU failure and the frequency distribution system is provided with a 9481 and 9480 with PSU service option is installed, the DC input shall remain connected to the 9481 until the PSU maintenance cable has been installed after removal of the 9480 top cover.

Plug the PSU maintenance cable to the PSU service option board (if installed), this is located on the LHS of the unit when viewed from the front panel.

Remove the 10 screws of the metal plate securing the input/output cards, slide this plate back over the leads.

Take out the four screws through the upper chassis into the PSU Assembly.

Take out the four screws through the black snap bushes on the baseplate, underneath the chassis.

Carefully slide out the PSU Assembly from the rear of the chassis, so the mating connector on the Distribution Board PCB is not damaged.

AC and DC supply fuses are located on the PSU rear panel and can easily be replaced. The AC fuse is located behind the mains selector cover above the input socket.

To replace the PSU Assembly, carefully slide into the rear of the chassis so the connector on the Distribution Board is not
damaged.
Enter the four screws through the upper chassis, enter the four screws through the baseplate and tighten up.

Replace the input/output securing plate with its 10 screws.

Output Card(s)

Individual output cards are behind a metal plate that covers all cards installed and must be removed to give access to any card. The plate is held by 10 fixing screws.

On earlier versions of the 9480, output cards were each secured by two fixings per card and there was no overall cover plate.

The left hand slot is reserved for the external reference input cards.

Display Board

The Display/Indicator Board is easily removed if the front panel is dropped forward.

Release, but do not remove, two screws through the front panel bezel at the bottom of the chassis.

Remove the two large screws through the bottom plate near the front panel.

Lay the front panel forwards.
Remove the six screws through the stand-off pillars on the Display Board.

Disconnect the 34-way Ribbon Cable Assembly from PIAOI on the Display Board.

To replace the Display Board, first attach the Ribbon Cable and secure board with six screws through stand-off pillars to the front panel. Display LEDs should be carefully aligned with front panel holes to prevent damage to LEDs.

Restore the front panel to its normal position and tighten the two screws though the bottom bezel on the front panel.

Replace the two screws through the bottom plate and tighten.
If Display Board is changed, the oscillator must be set-up using resistor R43 according to the calibration procedure.

Oscillator

First remove thc instrument top cover as described in an earlier paragraph.

Free off the front panel as described earlier.

On the Distribution Board, release the multiway connector on the cable assembly from the Oscillator and the SMC connectors on the coaxial from the Band Pass Filter Assembly.

The Oscillator and Band Pass Filter are mounted on a plate to the inner chassis.

Take out the inner chassis by removing six side fixing screws and 10 screws through the bottom of the 9480.

Separate the plate from the inner chassis.
Remove the screws that hold the Oscillator to the plate.
To separate the Band Pass Filters from the baseplate, remove the four fixing screws through the bottom of the baseplate.

The removal procedure for the Oscillator and Band Pass Filter is essentially the same for all options that can be fitted, though positions of the monitoring plate on the chassis will vary between options.

It may also be necessary to separate Oscillator and BPF by removing the cable connection between units.

To replace, affix the Oscillator and Band Pass Filter to their baseplate and restore the wiring connection between them, if previously removed.

Mount the baseplate on the inner chassis and fix through the pillars with four screws. The inner chassis can be secured to the main chassis bottom by fixing the six side screws and the ten screws through the bottom of the 9480 .

Restore the 2-wire multiway connector and the SMC connection on the large Distribution Board from the Oscillator and Band Pass Assembly.

Replace the front panel.

Battery Pack

> A battery pack and Battery Control Board are fitted together as an option in a 9480 chassis.

To take out the battery pack, remove the seven screws that secure its baseplate to the inner chassis.

Unclip the 7-way connector from PL502 on the Battery Control Board.

Lift the battery pack out of the unit
To replace a battery pack, secure its baseplate to the inner chassis with seven fixing screws.

Make the connection to the multipin connector PL502 on the Battery Control Board.

Replace the front panel.

Battery Control Board

The battery pack should be removed as described in the previous paragraph before this board can easily be removed.

On the Control Board, remove the connector on PL501 from the Distribution Board or PSU Maintenance Board and remove the connection on PLS02 from the battery pack.

The 9-way ribbon cable underneath the board need not be released.

Remove the four long screws through the board and lift the board out.

Two Quick Blow fuses on the board can be replaced with the board in position in the chassis.

The Battery Control Board should be replaced before the Battery Pack.

Secure the board to the inner wall through the four pillars and make the connections to PL501 from the Distribution Board or PSU Maintenance Board and at PL502 from the Battery Pack.

The ENABLE/DISABLE switch on the Battery Control Board can be set to ENABLE by pointing the switch to the back of the unit. It can also be set after removing a protective grommet in the unit top cover. A label on the cover gives directions.

Distribution Board

Remove the instrument top cover and the backplate over the output cards as described earlier in removal of instrument covers.

Maintenance 6-6

Take out all the output cards and the external reference card.
Take out the Power Supply Assembly as described earlier.
Remove two screws through center of side wall retaining the inner wall end.

Free one side of unit by removing the three fixing screws behind the handle and by releasing the screw through the front panel top bezel on that side.

Take out the top inner chassis, after removing two small screws through both sides of unit into top chassis as well as the two screws holding the top chassis through stand-off pillars to the inner wall of the unit.

Remove the rear corner extrusion piece at the same time.
On the Distribution Board, disconnect the SMC type connectors PL202, 204, 205 and the ribbon cable connectors PL201, 203 and 207.

The connector PL209 should also be disconnected from the Battery Control Board, if installed.

Take out the seven remaining screws through stand-offs to the inner wall.

Remove the Distribution Board.
The screened boxes on the board are removed by desoldering to gain access to the logic ICs.

To replace the Distribution Board, attach it to the 9480 inner wall with seven small screws through stand-off pillars.

Secure the inner wall to one side of unit using two fixing screws.
Attach top chassis to side wall and through Distribution Board to the unit inner wall.

Replace the other side of unit and secure to handle, and front panel top bezel.

Secure the inner wall end with two screws to the unit side and top chassis to the side with two screws.

Make the electrical connections to the Distribution Board from the other boards.

Restore the Power Supply Assembly and secure in the chassis and restore all output cards that were removed, in their correct
positions.
Put all covers back on unit.

Setting Up Procedures

Initial Checks

A 9-way connector on the rear frame is removed after taking out two screws and after releasing its connection to the Distribution Board.

Set AC and DC mains switches to the OFF position, connect a nominal $A C$ input and $a+24 \vee 3$ A source to $D C$ input.

Verify that RF output sockets are at system earth by clipping on a resistance or continuity meter. Resistance should be less than 1Ω.

Apply 10 MHz sinewave at -7 dBm to input socket of external reference board. The individual harmonics of this signal must be lower than -26 dBc .

Unit Status Indication

Close DC power switch and verify that all status indicator LED's on front panel are in the status set out below.

ALARM - OFF	If ALARM is flashing, press RESET.
	If ALARM continues to flash, there is a fault.

EXT.STD.-ON
LOCK -ON If a rubidium (FRK-L, FRK-H or FRS) Internal Standard is fitted, wait for the LOCK to turn on. This may take several minutes. Otherwise LOCK should turn on instantly.
OUTPUT CARDS (1-8) ON, where the corresponding card is installed, otherwise OFF.
AC POWER - OFF
DC POWER - ON
BATTERY - OFF
Table 6-2, Limit Details of Internal Standard Options

Option	Section 1:	Section 2:

Maintenance 6-8

	Electrical Trim Range	Monitor Voltage @ Diag. Skt., Pin 4
04A	(N/A)	(N/A)
04B	>1 PARTS IN 10^{7}	1.6 V to 3.2V
04E	>3 PARTS IN 10^{7}	OV to 10 V
FRK-L	>2 PARTS IN 10^{9}	$8 \mathrm{~V} \pm 0.25 \mathrm{~V}$
FRK-H	>2 PARTS IN 10^{9}	$8 \mathrm{~V} \pm 0.25 \mathrm{~V}$
FRS	>1 PARTS IN 10^{9}	N/A
(Not Installed)		N/A

Front Panel Outputs

External Reference/Multiplier Board Indication

Check that output at MONITOR socket on FRONT PANEL is 10 $\mathrm{MHz}, 13 \mathrm{MHz}$ or 1 MHz (according to option) squarewave, 0.3 V $\pm 0.1 \mathrm{~V}$ p-p across 50Ω load.

Check that output at 1 PPS socket on FRONT PANEL is 1 Hz squarewave, $0.3 \mathrm{~V} \pm 0.1 \mathrm{~V}$ p-p across 50Ω load.

Disconnect 10 MHz input from External Reference or Multiplier Board and verify that EXT STD LED on FRONT PANEL is OFF.

If MULTIPLIER board option is installed, apply $1 \mathrm{MHz/}-7 \mathrm{dBm}$ sinewave to input socket and momentarily depress RESET button. Verify that LED status is as stated in paragraph 86. Repeat with 2 MHz and 5 MHz inputs, note LED status and then disconnect.

Rubidium Internal Standard Indication

Open DC power switch for 10 seconds, close the switch and verify that the LOCK LED on FRONT PANEL remains OFF for between 3 and 60 seconds after switch on, and then turns ON. In some conditions, this period could extend to several minutes.

If a Rubidium standard is not installed, the LOCK LED will come ON instantly.

Battery Back-Up Indication

If this option is fitted, open DC power switch, remove rubber grommet from top cover of mainframe to expose "Battery Enable" toggle switch. Move switch lever to rear of mainframe, this enables battery.

Verify that "BATTERY" LED on FRONT PANEL is ON. If LED is OFF this could indicate a discharged battery. If LED is OFF go to AC check as stated in paragraph 96 and return to this checkout after completion of all other tests, when battery should have gained sufficient charge.

Return switch to original position and replace grommet.

AC Mains Indication

Turn on AC mains switch.
Connect 10 MHz input to External Reference Board and momentarily press RESET button on FRONT PANEL.

Verify LED status is as stated in paragraph 86 except AC POWER should be ON and DC POWER OFF.

Alarm Function

(This check applies only to Output Cards with sinusoidal RE outputs; $13 \mathrm{MHz}, 10 \mathrm{MHz}, 5 \mathrm{MHz}, 1 \mathrm{MHz}$ or 100 kHz).

Apply a short circuit to one RF output socket on each output card in turn, using the 50Ω BNC shorting plug.

Verify that, in each case, the corresponding output card indicator LED and the ALARM indicator LED on the FRONT PANEL flash alternately

Disconnect the short circuit, depress the RESET button and verify that the FRONT PANEL LED corresponding to each output card installed is lit continuously and the ALARM LED on the FRONT PANEL is now extinguished.

Output Card Function and Interaction

The following cheeks apply to each of the RE output card.
Verify for all outputs that:-

1) The signal level at all sockets is $+13 \mathrm{dBm} \pm 2 \mathrm{~dB}$
2) Second and third harmonics are lower than -30 dBc .
3) Spurious signals are at levels no higher than -70 dBc .
4) At 1 MHz the spurious signal is lower than -70 dBc .

The following checks apply to TTL Output Cards. Using a BNC Tpiece connected at the Signal Generator Output, connect the 10 MHz signal to the EXT.STD input on the counter. For each TTL output, verify that -

1) With card output connected to the 50Ω input of counter, the frequency is $2.048000 \mathrm{MHz} \pm 2$ digits.
2) Using oscilloscope set to 50Ω coupling and $0.1 \mathrm{~V} /$ div, check the output amplitude is $0.38 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}, \pm 100 \mathrm{mV}$.

Disconnect EXT. STD. input on counter when checks have been performed.

Internal Standard Function And Adjustment

NOTE:

> Adjustment of the Internal Standard is to be performed by Racal Instruments Ltd. Adjustment by unauthorized personnel will void any Warranty or Calibration guarantees.

Disconnect the 10 MHz input signal from the External Reference/Multiplier card and check that the EXT. STD. indicator LED on the FRONT PANEL is OFF.

For any RE Output Card installed, perform the output socket checks, as described earlier on one socket from each card.

If no RE Output Card is installed, perform the output checks for a TTL Output Card(s), but be sure that the EXT. STD. input on the counter is connected to the front panel MONITOR socket, instead of the Signal Generator output.
(The following checks do not apply to the 04A standard option.)
Leave the 9480 running on AC mains supply for at least 2 hours.
Using the Difference Meter with a 10 MHz Frequency Standard
(better than 1 part in 10^{11}) connected to the Reference Input, connect the MONITOR output on the FRONT PANEL to the Difference Meter input.

To verify the electrical trim range due to adjustment of INTERNAL STANDARD ADJUST on the FRONT PANEL, proceed:-

1) Rotate control fully counter-clockwise and record reading from Difference Meter.
2) Repeat with control fully clockwise.
3) Calculate and record the difference and verify this figure is equal to or greater than the trim range stated in Section 1 of Table 6.2, for the standard being checked.

Operate the 9480 for 15 hours at $22^{\circ} \mathrm{C} \pm 0.5^{\circ} \mathrm{C}$ with its top cover on. After 15 hours, adjust the Internal Standard output frequency via the FRONT PANEL to better than 1 part in 10^{11}, using the Difference Meter set for this resolution.

Using the DMM, verify that the voltage at pin 4 of the diagnostic socket, on the rear part of the rnainframe, is within the limits specified in Section 2 of the Table 6.2 for the appropriate standard.

On completion of checks, switch off and remove the AC mains supply from the unit.

PSU Maintenance Option (PSO)

INTRODUCTION

Description

This option, in conjunction with tile maintenance support cable 10-3058, allows tile user to remove the 9480 plug-in PSU 117074 for maintenance while keeping the rest of the 9480 operational. Where the 9480 is rack mounted, it is strongly recommended that rack sliders are used to assist with this operation.

The option consists of a PCB and chassis mounted regulator assembly, together with connecting cables. The option is installed within tile 9480.

Using The Option

The following procedure should be used when it is required to remove the 9480 plug-in PSU for servicing, whilst maintaining 9480 operation.

Where the unit is rack mounted on sliders (recommended), release the front fixings securing the

9480 to the rack, and slide the unit out of the rack. Where the unit is in a fixed rack situation, it will be necessary to support the unit, after removal of the fixings, in a position that does not stress tile connecting leads at the back, while the maintenance procedures are carried out.

Connect a $+24.5 \mathrm{~V} \pm 0.5 \mathrm{~V}, 3 \mathrm{~A}$ DC standby supply (e.g. from Racal Instruments 9481) to the DC INPUT of the 9480 and set the 9480 DC power switch to ON. Set the AC power switch of the 9480 to OFF and disconnect the AC mains.

Follow the instructions in tile main body of the maintenance manual to remove tile 9480 top cover and rear screen plate.

Remove the protective insulator from PL3 on the 19-3180 PSU Maintenance Option PCB (left hand side panel viewed from the front).

Attach one end of tile maintenance support lead 10-3058 to PL3 on 19-3180 and the other end to a spare Standby DC Power output socket on the rear panel of tile 9481 (which must be switched on). Where a 9481 is not available, the user must connect a $+24.5 \mathrm{~V}+/-0.5 \mathrm{~V}, 3 \mathrm{~A}$ DC supply to tile 3 pin XLR connector on $10-3058$ (+24 V to pin 1 , 0 V to pin 3).

Set the plug-in PSU DC power switch to OFF and then follow the instructions for PSU removal in tile main body of the 9480 Maintenance Manual.

Before replacing the PSU, reconnect the +24.5 V standby supply to the DC INPUT and set the DC power switch to ON. Carefully insert the plug-in into the main chassis and secure in accordance with the instructions in the main body of the Maintenance Manual.

Disconnect the maintenance support cable 10-3058 and replace the protective cover onto PL3.

Replace the top cover and rear screen plate.
Connect the AC mains supply to the PSU and set the $\underline{A C}$ power switch to ON.
if the DC input to the 9480 external DC socket is no longer required (i.e. for standby power), set the DC power switch to OFF
and disconnect the DC power cable.

Chapter 7

PARTS AND DIAGRAMS

PREFACE

The figure numbers (Fig 1 etc.) quoted at the top of the Parts List refer to the circuit diagram in the back of the Parts List.

A comprehensive Parts List is given for the Output Board options. The component values that make the different options possible are clearly distinguished in the parts listing against the board references.

The Multiplier and External Reference Assemblies are shown in a single listing with the items not installed in assembly 19-3108 indicated by a *.

This page was left intentionally blank.

PARTS LIST

DISTRIBUTION ASSEMBLY 19-3106

(FIGURE 1)

C221	100n	Ceramic	50	20	$21-1708$
C222	100 n	Ceramic	50	20	$21-1708$
C223	100 n	Ceramic	50	$21-1708$	
C224	27 p		63	2	$21-1685$
C225	100 n	Ceramic	50	$21-1708$	
C226	100 n	Ceramic	50	$21-1708$	
C227	$8 \times 10 \mathrm{n}$	Ceramic Array		$21-7250$	
C228	$8 \times 10 \mathrm{n}$	Ceramic Array	50	$21-7250$	
C229	100 n	Ceramic	50	$21-1708$	
C230	100 n	Ceramic	50	20	$21-1708$
C231	100 n	Ceramic	50	20	$21-1708$
C232	100 n	Ceramic	50	20	$21-1708$
C233	100 n	Ceramic	20	$21-1708$	

Diodes

| D201 | Diode SIL | | $22-1029$ | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| D202 | | Diode SIL | | $22-1029$ |
| D203 | Diode SIL | | $22-1029$ | |
| D204 | Diode SIL | | $22-1029$ | |
| D205 | Diode SIL | | $22-1029$ | |
| D206 | Diode Zener 5.1 V | | | |

Transistors

| Q201 | | PNP 2N3906 | | $22-6008$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Q202 | | PNP 2N3906 | | $22-6008$ |
| Q203 | PNP 2N3906 | | $22-6008$ | |

Integrated Circuits

| U201 | | DIL 74HC00 | | $22-4775$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| U202 | | DIL 74LS04 | | $22-4533$ |
| U203 | | DIL 74LS04 | | $22-4533$ |
| U204 | | DIL 74HC4078 | | $22-4855$ |
| U205 | | DIL 74HC74 | | $22-4829$ |
| U206 | BCD Decade Counter | | $22-4915$ | |
| U207 | DIL 74HC00 | | $22-4775$ | |
| U208 | DIL Dual Decade Counter | | $22-4920$ | |
| U209 | | DIL Dual Decade Counter | | $22-4920$ |
| U210 | DIL Dual Decade Counter | | | |

Coils

| FX201 | Coil Assembly | | $17-3166$ | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| FX202 | Coil Assembly | | $17-3166$ | |
| FX203 | Coil Assembly | | | $17-3166$ |

Relays

RL201					$23-7537$
RL202				$23-7517$	

Parts And Diagrams 7-4

This page was left intentionally blank.

PARTS LIST
 POWER SUPPLY PEC ASSEMBLY 19-3105

(FIGURE 2)

Switches

SW9011				E120M11J	
SW902					E120M11J

Miscellaneous

| FS902 | | | | $031-1401$ |
| :---: | :--- | :--- | :--- | :--- | :--- |

PCB

| | Power Supply PCB | | | $19-3105$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

PARTS LIST

POWER SUPPLY PEC ASSEMBLY 19-3105
(FIGURE 3)

Capacitors

| | \underline{F} | | $\underline{\mathbf{V}}$ | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| C 101 | 6800μ | Electrolytic | 63 | |
| C 102 | 6800μ | Electrolytic | 63 | $21-0689$ |
| C 103 | 1μ | Electrolytic | 50 | $21-0689$ |
| C 104 | 330μ | Electrolytic | 40 | $21-0779$ |
| C 105 | 330μ | Electrolytic | 40 | $21-0687$ |
| C106 | 22μ | Electrolytic | 40 | $21-0687$ |
| C107 | 100 p | Ceramic | 500 | $21-0681$ |
| C108 | 68μ | Electrolytic | 16 | $21-1520$ |
| C109 | 100 n | Ceramic | 50 | |
| C110 | 100 n | Ceramic | 50 | $21-0625$ |
| C111 | 330μ | Electrolytic | 40 | $21-1708$ |
| C112 | 22μ | Electrolytic | 40 | $21-1708$ |

C113	100n	Ceramic	50		21-1708

Diodes

| D101 | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| D102 | | Rectifier 3A | 200 | |
| D103 | | IN4149 | | $22-1619$ |
| D104 | Rectifier 3A | 200 | 2 | |
| D105 | | | | $22-1029$ |
| D106 | | IN4149 | | |
| D107 | IN4149 | | | |
| D108 | | IN4149 | | $22-1029$ |
| D109 | Diode BZX79C10 | | $22-1029$ | |
| D110 | Voltage Reference 5V | | $22-1029$ | |
| D111 | Zener Diode 5V1 | | $22-1815$ | |
| D112 | | IN4149 | | $22-4265$ |
| D113 | Diode BZX79C4V7 | | $22-1808$ | |

Transistors

| Q101 | | $2 N 3904$ | | $22-6007$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Q102 | | $2 N 3904$ | | $22-6007$ |
| Q103 | | BDT91 | | 2 |
| Q104 | BD679 | | $22-6153$ | |
| Q105 | BD679 | | $22-6262$ | |
| Q106 | BD676 | | $22-6262$ | |
| Q107 | BD676 | | | |

Integrated Circuits

| U101 | | TL084CN | | 224243 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| U102 | | LT1083CP | | 224312 |

Relays

RL101		JS1-24V			$23-7534$

Miscellaneous

| PL101 | | Header Strip 16
 Way | | $23-5606$ |
| :--- | :--- | :--- | :--- | :--- | :---: |
| PL102 | | Header Strip 16
 Way | | $23-5606$ |
| PL103 | | Connector 32 Way | | $23-5689$ |
| PL104 | Header Strip 16
 Way | | $23-5606$ | |

PARTS LIST

BATTERY CONTROL PEC ASSEMBLY 19-3109
(FIGURE 4)

Cct. Ref.	Value	Description	Rating	Tol.	Part Number

Resistors

Ohms			w		
R501	2k2		0.25	5	20-2222
R502	4k7		025	5	20-2472
R503	33k		0.25	5	20-2333
R504	3k3		0.25	5	20-2332
R505	12k		0.25	5	20-2123
R506	100k		0.25	0.1	20-7609
R507	28k		0.25	0.1	20-7595
R508	220k		0.25	5	20-2224
R509	150k		0.25	5	20-2154
R510	15k		0.25	5	20-2153
R511	22k		0.25	5	20-2223
R512	100k		0.25	5	20-2104
R513	33k		0.25	5	20-2333
R514	10k		0.25	5	20-2103
R515	33k		0.25	5	20-2333
R516	1k		0.25	5	20-2102
R517	3k9		0.25	5	20-2392
R518	110		0.25	5	20-2111
R519	39	Wire-wound	2.5		20-5080
R520	39	Wire-wound	2.5		20-5080
R521	47k		0.25	5	20-2473
R522	3k3		0.25	5	20-2332
R523	1k5		0.25	5	20-3152
R524	1k5		0.25	5	20-3152
R525	10k		0.25	5	20-2103
R526	6k8		0.25	5	20-2682
R527	4k7		0.25	5	20-2472
R528					
R529	10k		0.25	5	20-2103
R530	2k2		0.25	5	20-2222
R531	10k		0.25	5	20-2103
R532	330k		0.25	5	20-2334
R533	47k		0.25	5	20-2473
R534	47k		0.25	5	20-2473
R535	3M3		0.25	5	20-2335
R536	22k		0.25	5	20-2223
R537	39	Wire-wound	2.5		20-5080
R538	39	Wire-wound	2.5		20-5080
R539	39	Wire-wound	2.5	-	20-5080
R540	100k		0.25	5	20-2104
R541	100k		0.25	5	20-2104
R542	100k		0.25	5	20-2104
R543	10k		0.25	5	20-2103

Capacitors

	\mathbf{F}		\mathbf{V}		
C501	100 n		50	20	$21-1708$
C502	100 n		50	20	$21-1708$
C503	100 n	50	20	$21-1708$	
C504	100 n		50	20	$21-1708$
C505	100 n	50	20	$21-1545$	
C506	10 n		25	20	$21-5507$
C507	1μ		100	20	

Parts And Diagrams 7-12

C508	47μ		25	20	$21-0789$

Diodes

| D501 | | IN4149 | | $22-1029$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| D502 | | Voltage Regulator 5V1 | | $22-1808$ |
| D503 | | Diode REF50Z | | $22-4265$ |
| D504 | | IN4149 | | $22-1029$ |
| D505 | | Voltage Regulator 12V | | 2 |
| D506 | Voltage Regulator 8V2 | | $2-1817$ | |
| D507 | | IN4002 | | $22-1813$ |
| D508 | | IN4002 | | $22-1602$ |
| D509 | | IN4149 | | $22-1602$ |
| D510 | | IN4149 | | $22-1029$ |
| D511 | | Voltage Regulator 5V1 | | $22-1029$ |
| D512 | | Voltage Regulator 2V7 | | $22-1808$ |
| D513 | Voltage Regulator 2V7 | | $22-1801$ | |
| D514 | | IN4149 | | $22-1801$ |
| D515 | | OA91 | | $22-1029$ |

Transistors

Q501	2N3904			22-6007
Q502	2N3904			22-6007
Q503	RFP12P0B			22-6267
Q504	2N3904			22-6007
Q505	ZTX750			22-6185
Q506	BD438			22-6270
Q507	ZTX750			22-6185
Q508	2N3904			22-6007
Q509	2N3904			22-6007
Q510	2N3904			22-6007
Q511	J177			22-6264

Integrated Circuits

| U501 | | TLC271 | | $22-5118$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| U502 | | 74 HC 4020 | | 224919 |
| U503 | | 74 HC 4020 | | 224919 |
| U504 | | $74 \mathrm{HC10}$ | | 224918 |

Relays

| RL501 | | LM44EOO | | $22-7535$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

Miscellaneous

| S501 | | Switch 2 Pole 2 Way | | $23-4127$ |
| :--- | :--- | :--- | :--- | :--- | :---: |
| FS501 | | Fuselink 5x20 mm | | $23-0009$ |
| FS502 | | Fuselink 5x20 mm | | $23-0009$ |
| | | | | |

PARTS LIST
 OUTPUT BOARD(S)
 19-3100 (13 MHz), 19-3101(10 MHz), 19-3102 (5 MHz),
 19-3103 (1 MHz), 19-3104 (100 kflz)

(FIGURE 5)

R48	82	0.25	5	20-2820
R49	10	0.25	5	20-2100
R50	100k	0.25	5	20-2104
R51	330k	0.25	5	20-2334
R52	6k8	0.25	5	20-2682
R53	2k7	0.25	5	20-2272
R54	100	0.25	5	20-2101
R55	1k2	0.25	5	20-2122
R56	1k5	0.25	5	20-2152
R57	470	0.25	5	20-2471
R58	10	0.25	5	20-2100
R59	82	0.25	5	20-2820
R60	10	0.25	5	20-2100
R61	100k	0.25	5	20-2104
R62	330k	0.25	5	20-2334
R63	1k8	0.25	5	20-2182

Capacitors

	F		V		
C1	100n	Ceramic	50	20	21-1708
C2	100n	Ceramic	50	20	21-1708
C3	3.3μ	Aluminum Electrolytic	25	20	21-0762
C4	100n	Ceramic	50	20	21-1708
CS	100n	Ceramic	50	20	21-1708
C6	100n	Ceramic	50	20	21-1708
C7	47μ	Aluminum Electrolytic	25	20	21-0789
C8	10n	Ceramic	'00	+801-20	21-1709
C9	10n	Ceramic	100	+801-20	21-1709
C10	100n	Ceramic	50	20	21-1708
C11	22μ	Aluminum Electrolytic	40	20	21-0681
C12	100n	Ceramic	50	20	21-1708
C13	100n	Ceramic	50	20	21-1708
C14	10n	Ceramic	100	+801-20	21-1709
C15	3.3μ	Aluminum Electrolytic	25	20	21-0762
C16	100n	Ceramic	50	20	2i-170~
C17	47μ	Aluminum Electrolytic	25	20	21-0789
C18	100n	Ceramic	50	20	21-1708
C19	100n	Ceramic	50	20	21-1708
C20	10n	Ceramic	100	+801-20	21-1709
C21	100n	Ceramic	50	20	21-1708
C22	100n	Ceramic	50	20	21-1708
C23	3.3μ	Aluminum Electrolytic	25	20	21-0762
C24	100n	Ceramic	50	20	21-1708
C25	100n	Ceramic	50	20	21-1708
C26	100n	Ceramic	50	20	21-1708
C27	47μ	Aluminum Electrolytic	25	20	21-0789

C28					
$19-3100$	$68 p$	Polyester			
$19-3101$	$100 p$	Silver Mica		$21-2643$	
$19-3102$	$180 p$	Silver Mica		$21-3031$	
$19-3103$	$1 n 5$	Silver Mica	Polyester		$21-3037$
$19-3104$	$12 n$			$21-2917$	

C29					
$19-3100$	$18 p$	Ceramic	63	2	$21-1683$
$19-3101$	$22 p$	Ceramic	63	$21-1684$	
$19-3102$	$33 p$	Ceramic	63	$21-1686$	
$19-3103$	$274 p$	Silver Mica		2	$21-2842$
$19-3104$	$3 n 4$	Polyester		$21-3851$	

| C30 | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $19-3100$ | $120 p$ | Polyester | | |
| $19-3101$ | $150 p$ | Silver Mica | | $21-2645$ |

Parts And Diagrams 7-16

$19-3102$	330 p	Silver Mica			$21-2659$
$19-3103$	1 n 91	Silver Mica		$21-2927$	
$19-3104$	12 n	Polyester			$21-3577$

C31	100 n	Ceramic	50	20	$21-1708$
C32	100 n	Ceramic	50	20	$21-1708$
C33	47μ	Aluminum Electrolytic	25	20	$21-0789$
C34	10 n	Ceramic	100	$+801-20$	$21-1709$
C35					
C36	100 n	Ceramic	50	20	$21-1708$
C37	3.3μ	Aluminum Electrolytic	25	20	$21-0762$
C38	100 n	Ceramic	50	20	$21-1708$
C39	100 n	Ceramic	50	20	$21-1708$
C40	100 n	Ceramic	50	20	$21-1708$
C41	47μ	Aluminum Electrolytic	25	20	$21-1709$
C42	100 n	Ceramic	50	20	$21-0762$
C43	3.3μ	Aluminum Electrolytic	25	20	$21-1708$
C44	100 n	Ceramic	50	20	$21-1708$
C45	100 n	Ceramic	50	20	$21-1708$
C46	100 n	Ceramic	50	20	$21-0789$
C47	100 n	Ceramic	50	20	$21-1708$
C48	47μ	Aluminum Electrolytic	25	20	$21-1708$
C49	100 n	Ceramic	50	20	20
C50	100 n	Ceramic	50	20	

C51					
$19-3100$	$60 p 4$	Polyester		$21-2774$	
$19-3101$	$86 p 6$	Silver Mica		$21-2790$	
$19-3102$	$174 p$	Silver Mica			$21-2823$

C52					
$19-3100$	$68 p$	Polyester			$21-2643$
$19-3101$	100 p	Silver Mica			$21-3031$
$19-3102$	180 p	Silver Mica			$21-3037$

Diodes

| D1 | | Zener 6V2 | | $22-1810$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| D2 | | Diode SIL IN4149 | | $22-1029$ |
| D3 | | Diode SIL IN4149 | | $22-1029$ |
| D4 | Diode SIL IN4149 | | $22-1029$ | |
| D5 | Diode SIL IN4149 | | $22-1029$ | |
| D6 | | Diode SIL IN4149 | | 2 |
| D7 | Diode SIL IN4149 | | $22-1029$ | |
| D8 | Diode SIL IN4149 | | $22-1029$ | |
| D9 | | Diode SIL IN4149 | | 2 |
| D10 | Diode SIL IN4149 | | $22-1029$ | |
| D11 | Diode SIL IN4149 | | $22-1029$ | |

Inductors

SEL1-5					
$19-3100$	$18 \mu \mathrm{H}$	Inductor		± 10	$23-7207$
$19-3101$	$33 \mu \mathrm{H}$	Inductor		± 10	$23-7163$
$19-3102$	$150 \mu \mathrm{H}$	Inductor	Capacitor, Ceramic 500V		$23-7165$
$19-3103$	33 pF	Capacitor, Ceramic 500V		$21-1514$	
$19-3104$	1 nF			$21-1532$	

L1	100μ	Inductor	10	$23-7213$	
L2	10μ	Inductor		$23-7155$	
L3	10μ	Inductor	10	$23-7155$	
L4	100μ	Inductor		10	$23-7213$
L5	100μ	Inductor	10	$23-7213$	

L6					
$19-3100$	$1 \mu 2$			10	$23-7193$
$19-3101$	$1 \mu 5$			10	$23-7194$
$19-3102$	$3 \mu 3$			10	$23-7198$
$19-3103$	12μ			10	$23-7205$
$19-3104$	100μ			10	$23-7213$

L7	100μ	Inductor		10	$23-7213$

L8					
$19-3100$	680 n			10	$23-7190$
$19-3101$	820 n			10	$23-7191$
$19-3102$	$1 \mu 8$			10	$23-7195$
$19-3103$		Wire Link Fitted		$23-9124$	
$19-3104$		Wire Link Fitted		$23-9124$	

L9	100μ	Inductor		10	$23-7213$

Transistors

| Q1 | | N-Type 2N2219 | | $22-6261$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Q2 | | NPN 2N3904 | | $22-6007$ |
| Q3 | | N-Type 2N2219 | | $22-6261$ |
| Q4 | | NPN 2N3904 | | $22-6007$ |
| QS | | N-Type 2N2219 | | |
| Q6 | NP N 2N3904 | | $22-6261$ | |
| Q7 | | N-Type 2N2219 | | $22-6007$ |
| Q8 | | NPN 2N3904 | | 2 |
| Q9 | | N-Type 2N2219 | | $2-6261$ |
| Q10 | | NPN 2N3904 | | $22-6007$ |
| Q11 | | NPN 2N3639 | | $22-6261$ |

Integrated Circuits

Miscellaneous

LK (1-13) as fitted.		Link(s) BTC 0.56mm dia		$25-0004$

This page was left intentionally blank.

PARTS LIST
 2.048 MHz OUTPUT BOARD 19-3125
 (FIGURE 6)

Cct. Ref.	Value	Description	Rating	Tol.	Part Number
Resistors					
	Ohms		W		
R1	680		0.25	5	20-2681
R2	1k		0.25	5	20-2102
R3	150		0.25	5	20-2151
R4	1k		0.25	5	20-2102
R5	1k		0.25	5	20-2102
R6	1M		0.25	5	20-2105
R7					
R8	1k		0.25	5	20-2102
R9					
R10	100		0.25	5	20-2101
R11	1k8		0.25	5	20-2182
R12	1k2		0.5	5	20-3122
R13	4k7		0.25	5	20-2472
R14	100k		0.25	5	20-2104
R15	1k2		0.5	5	20-3122
R16	4k7		0.25	5	20-2472
R17	100k		0.25	5	20-2104
R18	1k2		0.5	5	20-3122
R19	4k7		0.25	5	20-2472
R20	100k		0.25	5	20-2104
R21	1k2		0.5	5	20-3122
R22	4k7		0.25	5	20-2472
R23	100k		0.25	5	20-2104
R24	1k2		0.5	5	20-3122
R25	4k7		0.25	5	20-2472
R26	100k		0.25	5	20-2104
R27	470		0.25	5	20-2471
R28	10k		0.25	5	20-2103
R29	0.5		0.5	5	20-3122
R30	0.5		0.5	5	20-3122
R31	1k2		0.5	5	20-3122
R32	1k2		0.5	5	20-3122
R33	1k2		0.5	5	20-3122
R34	100		0.25	5	20-2101
R35	100		0.25	5	20-2101
R36	100		0.25	5	20-2101
R37	100		0.25	5	20-2101
R38	1M		0.25	5	20-2105
R39					
R40	10k		0.25	5	20-2103
R41	18		0.25	5	20-2180

Capacitors

	\underline{F}		$\underline{\mathrm{~V}}$		
C1	10n	Ceramic	100	$+80 /-20$	$21-1709$
C2	10 n	Ceramic	100	$+80 /-20$	21
C3	10 n	Ceramic	100	$+80 /-20$	$21-1709$
C4	10 n	Ceramic	100	$+80 /-20$	$21-1709$
C5	10 n	Ceramic	100	$+80 /-20$	$21-1709$
C6	10 n	Ceramic	00	$+80 /-20$	$21-1709$
C7	10 n	Ceramic	100	$+80 /-20$	$21-1709$
C8	10 n	Ceramic	00	$+80 /-20$	$21-1709$
C9	10 n	Ceramic	100	$+80 /-20$	$21-1709$
C10	10 n	Ceramic	100	$+80 /-20$	$21-1709$
C11					
C12	Ceramic	100	$+80 /-20$	$21-1709$	
C13	C14	Cluminum Electrolytic	40	20	$21-0693$
C15	33μ	50	20	$21-1708$	

C16	470 n	Polyester	63	10	214568
C17	470 n	Polyester	63	10	214568
C18	150 n	Polycarbonate			$21-5541$
C19					
C20	100 n	Ceramic	50	20	$21-1708$
C21	100 n	Ceramic	50	20	$21-1708$
C22	100 n	Ceramic	50	20	$21-1708$
C23	100 n	Ceramic	50	20	$21-1708$
C24	100 n	Ceramic	50	20	$21-1708$
C25	10 n	Ceramic	100	$+80 /-20$	$21-1709$
C26	10 n	Ceramic	100	$+80 /-20$	$21-1709$

Inductors

| | $\underline{\mathbf{H}}$ | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| L1 | 10μ | | | $23-7155$ |
| L2 | 10μ | | 10 | $23-7155$ |

Diodes

Transistors

| Q1 | | NPN ZTX450 | | $22-6112$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Q2 | | NPN ZTX450 | | $22-6112$ |
| Q3 | | NPN ZTX450 | | $22-6112$ |
| Q4 | | NPN ZTX450 | | $22-6112$ |
| Q5 | | NPN ZTX450 | | $22-6112$ |
| Q6 | | NPN BD135 | | 2 |
| Q7 | | NPN ZTX450 | | $22-6252$ |

Integrated Circuits

U1		Hex Inverter 74HCT14		$22-4925$	
U2		BCD Decade Counter 74HCT161		$22-4924$	
U3		BCD Decade Counter 74HCT161		$22-4924$	
U4		BCD Decade Counter 74HCT161		$22-4924$	
U5		Phase Freq Detector MC4044		$22-4200$	
U6	Op Amp MC33171		$22-4351$		
U7		Crystal Oscillator 16.38 MHz		$23-9208$	
U8	BCD Decade Counter 74HCT 161		$22-4924$		
U9		BCD Decade Counter 74HCT161		$22-4924$	
U10		BCD Decade Counter 74HCT161			

Parts And Diagrams 7-22

| U11 | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| U12 | | | | |
| U13 | | Octal Buffer 74ACT541 | | $22-5143$ |
| U14 | | 8 Input NAND 74HC30 | | $22-4819$ |

Links

| LK2 | | BTC 0.56mm dia | | $25-0004$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

PARTS LIST
 MULTIPLIER ASSEMBLY 19-3139 AND EXTERNAL REFERENCE ASSEMBLY 19-3108
 (FIGURE 7)

Note: These are similar assemblies. Components not fitted to assembly 19-3108 are indicated *.

Cct. Ref.	Value	Description	Rating	Tol. \%	Part Number
Resistors					
Ohms			W		
R301	56		0.25	5	20-2560
R302					
R303	56		0.25	5	20-2560
R304	220		0.25	5	20-2221
R305	2k2		0.25	5	20-2222
R306	3k9		0.25	5	20-2392
R307					
R308	47k		0.25	5	20-2473
R309	1k		0.25	5	20-2102
R310	10k		0.25	5	20-2103
R311	1k		0.25	5	20-2102
R312					
R313	47k		0.25	5	20-2473
R314	1k	Potentiometer			20-7112
R315	2k2		0.25	5	20-2222
R316	68k		0.25	5	20-2683
R317	47k		0.25	5	20-2473
R318	4 k 7		0.25	5	20-2472
R319	33k		0.25	5	20-2333
R320	33k		0.25	5	20-2333
R321	10k		0.25	5	20-2103
R322					
R323*	10k		0.25	5	20-2103
R324*	330		0.25	5	20-2331
R325*	56		0.25	5	20-2560
R326*	220		0.25	5	20-2221
R327*	220		0.25	5	20-2221
R328*	220		0.25	5	20-2221
R329*	220		0.25	5	20-2221
R330*					
R331*	10k		0.25	5	20-2103
R332*	10k		0.25	5	20-2103
R333*	220		0.25	5	20-2221
R334*	10k		0.25	5	20-2103
R335*	560k		0.25	5	20-2564
R336*	10k		0.25	5	20-2103
R337*	15k		0.25	5	20-2153
R338*	1k8		0.25	5	20-2182
R339*	100k		0.25	5	20-2104
R340*	150k		0.25	5	20-2154
R341*	100		0.25	5	20-2101
R342*	220		0.25	5	20-2221
R343*	390		0.25	5	20-2391
R344*	2k2		0.25	5	20-2222
R345*	3k9		0.25	5	20-2392
R346*	22k		0.25	5	20-2223

Capacitors

	\underline{F}				
C301	100n	Ceramic	50	20	$21-1708$
C302	100 n	Ceramic	50	20	$21-1708$
C303	220p	Ceramic	63	2	$21-1696$
C304	100n	Ceramic	50	20	$21-1708$
C305					

C306					
C307	100n	Ceramic	50	20	21-1708
C308	100n	Ceramic	50	20	21-1708
C309					
C310	100n	Ceramic	50	20	21-1708
C311		Aluminum Electrolytic	16	$-10+50$	21-0625
C312	2.7n	Ceramic		-20+40	21-1537
C313	100n	Ceramic	50	20	21-1708
C314	220p	Ceramic	63	2	21-1696
C315	39p	Ceramic	63	2	21-1687
C316					
C317*	100n	Ceramic	50	20	21-1708
C318*	10n	Ceramic	100	+80-20	21-1709
C319*	10n	Ceramic	100	+80-20	21-1709
C320*	100n	Ceramic	50	20	21-1708
C321*	10n	Ceramic	100	+80-20	21-1709
C322*	10n	Ceramic	100	+80-20	21-1709
C323*	10n	Ceramic	100	+80-20	21-1709
C324*	220p	Ceramic	63	2	21-1696
C325*	220p	Ceramic	63	2	21-1696
C326*	100n	Ceramic	50	20	21-1708
C327*	100n	Ceramic	50	20	21-1708
C328*	2-15p	Cap Trimmer			21-6043
C329*	100n	Ceramic	50	20	21-1708
C330*	10n	Ceramic	100	+80-20	21-1709
C331*	10n	Ceramic	100	+80-20	21-1709
C332*	10 μ	Aluminum Electrolytic	40	20	21-0798
C333*	10n	Ceramic	50	20	21-1708
C334*	10n	Ceramic	100	+80-20	21-1709

Inductors

	$\underline{\mathrm{H}}$				
L 301	1.2μ			10	$23-7193$
L 302					
L303	33μ			10	$23-7163$
L304	33μ			10	$23-7163$
L305	1.2μ			10	$23-7193$
L306	33μ			10	$23-7163$
L307					
L308					

Diodes

D301	SIL BAW62			22-1049
D302	SIL BAW62			22-1049
D303				
D304				
D305	Diode Schottkv 5082-2826			22-1073
D306				
D307	Diode Schottkv 5082-2X26			22-1073
D308				
D309*	SIL IN4149			22-1029
D310*	SIL IN4149			22-1029
D311*	SIL IN4149			22-1029
D312*	SIL IN4149			22-1029
D313*	MV1640			22-1097
D314*	SIL IN4149			22-1029

Transistors

| Q301 | | PNP 2N3906 | | $22-6008$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Q302 | | PNP 2N3906 | | $22-6008$ |
| Q303 | | NPN 2N3904 | | $22-6007$ |
| Q304 | | PNP 2N3906 | | $22-6008$ |
| Q305 | | | | |

Parts And Diagrams 7-26

| Q306* * | | PNP 2N3906 | | $22-6008$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Q307* | | NPN 2N3904 | | $22-6007$ |
| Q308* * | | NPN 2N3904 | | $22-6007$ |
| Q309* $^{\text {Q310* }}$ | | NPN 2N3904 | | $22-6007$ |
| Q311* * | | PNP 2N3906 | | $22-6008$ |
| Q312* * | | PNP 2N3906 | | 2 |

Integrated Circuits

| U301 | | Op-Amp MC33171 | | 224351 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| U302* | | DIL 74L5132 | | 224582 |
| U303* 2 | DIL UA741 | | 224111 | |

Miscellaneous

| XL301* | Crystal Osc 10 MHz | | $17-2114$ | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| T301* | | Coil Assembly | | $17-3226$ |
| LK301 | Link BTC 0.56 mm dia | | $25-0004$ | |
| LK302 | | Link BTC 0.56 mm dia | | 2 |

Circuit Diagram:
Multiplier Assy 19-3199/Reference Assy 19-3108 Fig 7
9480
$\mathrm{~A} 4260 / \mathrm{IN}$

PARTS LIST EFERENCE CIIANGE OVER BOARD 19-3172
 (FIGURE 8)

Cct. Ref.	Value	Description	Rating	ToL	Part Numher
Resistors					
Ohms $\underline{\underline{\text { w }}}$					
R301	56		0.25	5	20-2560
R302					
R303	56		0.25	5	20-2560
R304	220		0.25	5	20-2221
R305			0.25	5	20-2222
R306	3k9		0.25	5	20-2392
R307					
R308	47"		0.25	5	20-2473
R309	1k		0.25	5	20-2102
R310	10k		0.25	5	20-2103
R311	1k		0.25	5	20-2102
R312					
R313	47k		0.25	5	20-2473
R314	1k	Potentiometer			20-7112
R315	2k2		0.25	5	20-2222
R316	68 k		0.25	S	20-2683
R317	47"		0.25	5	20-2473
R318	4k7		0.25	5	20-2472
R319	33k		0.25	5	20-2333
R320	33k		0.25	5	20-2333
R321	10k		0.25	5	20-2103
R322					
R323					
R324					
R325					
R326					
R327					
R328					
R329					
R330					
R331		Resistors designated R322	to R340		
R332					
R333					
R334					
R335					
R336					
R337					
R338					
R339					
R340					
R341	56		0.25	5	20-2560
R342	56		0.25	5	20-2560
R343	220		0.25	5	20-2221
R344	2k2		0.25	S	20-2222
R345	3k9		0.25	5	20-2392
R346					
R347	1k		0.25	5	20-2102
R348	2k2		0.25	5	20-2222
R349					
R350	10k		0.25	5	20-2103
R351	10k		0.25	5	20-2103
R352	1k		0.25	5	20-2102
R353	10k		0.25	5	20-2103
R354	1k		0.25	5	20-2102
R355	1k		0.25	5	20-2102
R356	10k		0.25	5	20-2103
R357	10k		0.25	5	20-2103
R358	12k		0.25	5	20-2123

R359	220		0.25	5	$20-2221$

Capacitors

	F		V		
C301	100n	Ceramic	50	20	21-1708
C302	100n	Ceramic	50	20	21-1708
C303	220p	Ceramic	63	± 2	21-1696
C304	100n	Ceramic	50	20	21-1708
C305					
C306					
C307	100n	Ceramic	50	20	21-1708
C308	100n	Ceramic	50	20	21-1708
C309					
C310	100n	Ceramic	50	20	21-1708
C311	68μ	Aluminum Elec	16	-10+50	21-0625
C312	2.7n	Ceramic		$-20+40$	21-1537
C313	100n	Ceramic	50	20	21-1708
C314	220p	Ceramic	63	± 2	21-1696
C315					
C329	100n	Ceramic	50	20	21-1708
C330					
C331					
C332					
C333	100n	Ceramic	50	20	21-1708
C334					
C335	100n	Ceramic	50	20	21-1708
C336	100n	Ceramic	50	20	21-1708
C337	100n	Ceramic	SO	20	21-1708
C338	100n	Ceramic	50	20	21-1708

Inductors

	$\underline{\mathrm{H}}$				
L301	1.2μ			± 10	$23-7193$
L302					
L303					
L304	33μ			± 10	$23-7163$
L305	33μ			± 10	$23-7163$
L306	1.2μ		± 10	$23-7193$	

Diodes

D301		Diode SIL BAW62			$22-1049$
D302		Diode SIL BAW62		$22-1049$	
D303					
D304					
D305		Schottky			
D306					
D307		Schotticy			

Transistors

Q301	PNP 2N3906			22-6008
Q302	PNP 2N3906			22-6008
Q303	NPN 2N3904			22-6007
Q304	PNP 2N3906			22-6008
Q305				
Q310	PNP 2N3906			22-6008
Q311	PNP 2N3906			22-6008
Q312				
Q313	PNP 2N3906			22-6008
Q314	NPN 2N3904			22-6007
Q315	NPN 2N3904			22-6007
Q316	PNP 2N3906			22-6008
Q317	PNP 2N3906			22-6008
Q318	NPN BC109			22-6041

Integrated Circuits

Parts And Diagrams 7-30

| U301 | | MC33171 | | 224351 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| U302 | | DIL 74LS132 | | 224582 |

| Switch | Ultra Miniature DPDT | | 234148 |
| :--- | :--- | :--- | :--- | :--- |

9480
A4260/IN

PARTS LIST
 FRS-BPF PEC ASSEMBLY 19-3124

(FIGURE 9)

Cct. Ref.	Value	Description	Rating	Tol.	Part Number
Resistors					
R601	$\frac{\text { Ohms }}{56}$	w	0.25	5	20-2560

Capacitors

	\underline{F}		$\underline{\mathrm{~V}}$		
C601	1.8 n				$21-1920$
C602	10 p	Ceramic	63	$21-1680$	
C603	22 p	Ceramic	63		$21-1684$
C604	1.8 n				$21-1920$

Inductors

	$\underline{\mathrm{H}}$				
L601	150 n	RF Inductor		10	$23-7182$
L602	8.2μ	RF Inductor		5	$23-7250$
L603	150 n	RF Inductor		10	$23-7182$

Miscellaneous

| PL601 | | SMC Male Connector | | $23-3482$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| PL602 | | SMC Male Connector | | $23-3482$ |

PARTS LIST
 DISPLAY PEC ASSEMBLY 19-3107

(FIGURE 10)

Capacitors

	$\underline{\mathbf{F}}$		$\mathbf{\mathbf { V }}$		
C401	68μ	Electrolytic	16		$21-0625$
C402	100 n	Ceramic		$21-1708$	
C403	100 n	Tantulum	35	$21-1041$	
C404	100 n	Ceramic		$21-1708$	
C405	100 n	Ceramic		$21-1708$	
C406	100 n	Ceramic		$21-1708$	
C407	100 n	Ceramic		$21-1708$	
C408	100 n	Ceramic			
C409	100 n	Ceramic		$21-1708$	

Integrated Circuits

| U401 | | $74 \mathrm{HC132}$ | | 224813 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| U 402 | | 74 HCO | | 224775 |
| U 403 | | $74 \mathrm{HCO0}$ | | 224775 |
| U 404 | $74 \mathrm{HC05}$ | | 224916 | |
| U 405 | | $74 \mathrm{HCO5}$ | | 2 |

Miscellaneous

| S401 | | Pushbutton Switch | | 234123 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| P1401 | | 34 Way Connector | | $23-3644$ |
| D401-414 | | Red LEDs, HLMP1700 | | $26-5033$ |

PARTS LIST
 QUARTZ STANDARD ASSEMBLY 04A AND 04B OPTION
 19-3141
 (FIGURE 11)

Cct. Ref.	Value	Description	Rating	Tol.	Part Number
Resistors					
	Ohms		W		
R1	33	Res Chip	0.125	5	20-5776
R2	100	Res Chip	0.125	5	20-5764
R3	100	Res Chip	0.125	5	20-5764
R4	1k	Res Chip	0.125	5	20-5792
R5	470	Res Chip	0.125	5	20-5765
R6	470	Res Chip	0.125	5	20-5765
R7	1k5	Res Chip	0.125	5	20-5794
R8	3k9	Res Chip	0.125	5	20-5798
R9	3k9	Res Chip	0.125	5	20-5798
R10	1k5	Res Chip	0.125	5	20-5794
R11	1k	Res Chip	0.125	5	20-5792
R12	39k	Res Chip	0.125	5	20-5808
R13	15k	Res Chip	0.125	5	20-5803
R14	330k	Res Chip	0.125	5	20-5816
R15	10k	Res Chip	0.125	5	20-5768
R16	1k	Res Chip	0.125	5	20-5792
R17	820	Res Chip	0.125	5	20-5791
R18	820	Res Chip	0.125	5	20-5791
R19	12	Res Chip	0.125	5	20-5772
R20	27	Res Chip	0.125	5	20-5775
R21	12	Res Chip	0.125	5	20-5772
R22	56	Res Chip	0.125	5	20-5779
R23	10k	Res Chip	0.125	5	20-5768
R24	3k3	Res Chip	0.125	5	20-5797
R25	680	Res Chip	0.125	5	20-5790

Capacitors

	\underline{F}	$\underline{\mathrm{~V}}$			
C1	10 n	Ceramic	50	10	$21-1801$
C2	10 n	Ceramic	50	10	$21-1801$
C3	10 n	Ceramic	So	10	$21-1801$
C4	10 n	Ceramic	50	10	$21-1801$
C5	10 n	Ceramic	50	10	$21-1801$
C6	10 n	Ceramic	50	10	$21-1801$
C7	100 n	Ceramic	50	20	$21-1700$
C8	10 n	Ceramic	50	10	$21-1801$
C9	220 n	Polyester	63	10	214566
C10	10 n	Ceramic	50	20	$21-1708$
C11	10μ	Aluminum Electrolytic	63	20	$21-0751$

Inductors

	$\underline{\mathrm{H}}$				
L1	100μ	Inductor Chip		10	$23-7424$
L2	100μ	Inductor Chip		10	$23-7424$

Diodes

D1		Diode BAS28			$22-1116$

Transistors

Q1		PNP BSR18A		$22-6199$	
Q2		PNP BSR18A			$22-6199$
Q3	NPN BSRI7A		$22-6197$		
Q4	NPN BSRI7A		$22-6197$		
Q5		NPN BSRI7A		$22-6197$	
Q6		PNP BSR18A		$22-6199$	
Q7		PNP BSRI8A		$22-6199$	

Integrated Circuits

Miscellaneous

| T1 | | TOKO Detector Coil | | $23-7149$ |
| :---: | :--- | :--- | :--- | :--- | :--- |
| T2 | | TOKO Detector Coil | | $23-7149$ |

9480
A4260/IN

This page is intentionally left blank.

Component Layout:
Output Board(s) t9-3 100 to 3104 Fig 16

Component Layout:
Multipher Assy 19-3139/Reference Assy 19-3108 Fig 18
9480
A4260/IN

9480
A4260/IN

Component Layout:
Display Board 19-3107 Fig 21
9480
A4260/N

Chapter 8 PRODUCT SUPPORT

Product Support

Reshipment Instructions

Racal Instruments has a complete Service and Parts Department. If you need technical assistance or should it be necessary to return your product for repair or calibration, call 1-800-722-3262. If parts are required to repair the product at your facility, call 1-949-859-8999 and ask for the Parts Department.

When sending your instrument in for repair, complete the form in the back of this manual.

For worldwide support and the office closes to your facility, refer to the Support Offices section on the following page.

Use the original packing material when returning the 9480 to Racal Instruments for calibration or servicing. The original shipping crate and associated packaging material will provide the necessary protection for safe reshipment.

If the original packing material is unavailable, contact Racal Instruments Customer Service for information.

Support Offices

Racal Instruments, Inc.
4 Goodyear St., Irvine, CA 92618-2002
Tel: (800) RACAL-ATE, (800) 722-2528, (949) 859-8999; FAX: (949) 859-7139

Racal Instruments, Ltd.
480 Bath Road, Slough, Berkshire, SL1 6BE, United Kingdom Tel: +44 (0) 1628 604455; FAX: +44 (0) 1628662017

Racal Systems Electronique S.A.

18 Avenue Dutartre, 78150 LeChesnay, France
Tel: +33 (1) 3923 2222; FAX: +33 (1) 39232225

Racal Systems Elettronica s.r.I.

Strada 2-Palazzo C4, 20090 Milanofiori Assago, Milan, Italy Tel: +39 (0)2 5750 1796; FAX +39 (0)2 57501828

Racal Elektronik System GmbH.
Technologiepark Bergisch Gladbach, Friedrich-Ebert-Strasse, D-51429 Bergisch Gladbach, Germany Tel.: +49 22048442 00; FAX: +49 2204844219

Racal Australia Pty. Ltd.
3 Powells Road, Brookvale, NSW 2100, Australia
Tel: +612 9936 7000, FAX: +612 99367036
Racal Electronics Pte. Ltd.
26 Ayer Rajah Crescent, 04-06/07 Ayer Rajah Industrial Estate, Singapore 0513.
Tel: +65 7792200, FAX: +65 7785400
Racal Instruments, Ltd.
Unit 5, 25F., Mega Trade Center, No 1, Mei Wan Road, Tsuen Wan, Hong Kong, PRC
Tel: +852 2405 5500, FAX: +852 24164335

